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Abstract: In this paper, a linear model predictive control (LMPC) based on extended state observer (ESO) strategy is
proposed to improve vehicle stability. Firstly, a linear model with disturbance term is obtained by linearizing the nonlinear
vehicle system. The plant-model mismatch and external disturbance are captured by ESO, and its stability is assessed. In
the following, estimated disturbance is compensated in the LMPC controller to meet the performance by nonlinear model

predictive control (NMPC), and the computational burden is decreased at the same time. Finally, the simulation results

under different road conditions verify the computational performance and control effect of the proposed method.
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1 Introduction

In recent years, vehicle stability control has re-
ceived significant attention and become a major re-
search area. Under poor driving conditions, such as ex-
tremely wet and snowy roads, most drivers may show
panic reactions and become unable to coordinate steer-
ing, braking and throttle commands in a timely and ef-
fective manner, so that the actual running state of the
vehicle and the driver’s intention are greatly deviated.
The deviations may result in vehicle offset and instabil-
ity, which put passengers at risk. Therefore, it is neces-
sary to design a vehicle stability control system to inter-
vene the vehicle timely and correct its state before the
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danger occurs!!.

Nowadays, various methods have been studied for
vehicle yaw stability control. The classical control
method is PID controller for vehicle safety and sta-
bility!?!. However, PID is still not suitable for some
complicated and extreme maneuvers in vehicle systems.
Hence, many modern control methods have been intro-
duced such as fuzzy logic control, triple-step nonlinear
method, sliding mode control and robust control. Fuzzy
logic control®®! and triple-step nonlinear method!*! can
simplify the nonlinear complexity of vehicle system de-
sign. However, the fuzzy rules of the control strate-
gy and the map using in triple-step method are most-
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ly decided by experience, which would be easily inef-
fective with unexpected maneuvers. Sliding mode con-
trol®® can achieve fast dynamic response, but the un-
desirable chattering always exists in the practical appli-
cation. To reduce the disturbance in vehicle systems,
robust control®") is presented. Since the design of ro-
bust control is generally based on the worst conditions
of systems, the control performance can not get opti-
mal for most situations. Nevertheless, in consider of the
multiple requirements and constraints existing in the ve-
hicle systems, model predictive control (MPC) has been
introduced to these systems as an effective way to cope
with such constrained optimal control problem!®!. MPC
is a model-based multivariable control method which
aims at solving constrained control problems with opti-
mization demands. Lots of successful papers show that
MPC as a practical constrained control algorithm has
been applied in many fields®'!!. Due to the nonlin-
ear terms in vehicle stability control system, nonlin-
ear model predictive control (NMPC) has been applied
to achieve good control performance!'>31. However,
there are still some problems that limit its application.
For NMPC, the real-time capability should be advanced
and the complexity of designing should be reduced!!*.

For the past few years, some novel control schemes
have been proposed to deal with the computational bur-
den in the vehicle stability control systems using NM-
PC. An explicit NMPC is proposed in [15], in which the
optimization problem is solved off-line. In [16-17], a
fast NMPC approach is proposed using an approximat-
ed control function and derived by means of set mem-
bership (SM) techniques. In addition to the improve-
ments in algorithm, a hardware acceleration is applied
in [18] using the field programmable gate array (FP-
GA). However, compared with LMPC, NMPC is still
not superior in computational efficiency.

In order to achieve good control performance on the
basis of reducing the computational burden, an LMPC
controller based on extended state observer (ESO) is
proposed for yaw stability control of in-wheel-motored
electric vehicle in this paper. An LMPC controller can
be obtained by linearizing the two degrees of freedom
(2-DOF) nonlinear vehicle model. The resulting dis-
turbance after linearization is estimated by ESO. ESO
is the key link toward the active disturbance rejection
control (ADRC) proposed by HANU?-201 1t ig tolerant
for most uncertainties in a large degree and not a mod-
el based approach which needs accurate mathematical
model?'=221, Based on the advantages above, ESO is
added to the control in this paper. With the estimat-
ed disturbance compensated in the LMPC controller,
the control performance is as good as NMPC approx-
imately, and the computational efficiency is improved
significantly compared to NMPC. The initial result on
the LMPC controller based on ESO has been studied in

our early work!?*!, which is for the simple single input
single output system. To solve the vehicle yaw stability
control problem, this paper extends it to a complicated
multiple input multiple output system. The simulation
results demonstrates its feasibility.

The structure of this paper is as follows. A 2-DOF
vehicle model for controller design is built in Section
2. In Section 3, an LMPC controller based on ESO is
designed in detail, and the stability of ESO is assessed.
The simulation results and analyses are given in Section
4. Finally, the short conclusion is drawn in Section 5.

2 Modeling for controller design

In this section, the construction of 2-DOF vehicle
model and tyre model are introduced respectively.

2.1 Vehicle model

Considering that the lateral and yaw motion of ve-
hicle are related to stability closely, only these two de-
grees of freedom are modeled. The longitudinal speed
of the vehicle is assumed to be constant. To simplify
the vehicle model, the front two wheels are assumed to
have same steering angle. Then the left and right wheels
of each axles are lumped into a single wheel. Under
the situation that drivers can only manipulate the front
wheel steering, a control oriented 2—-DOF vehicle model
is obtained and shown in Fig.1.

Front

Fig. 1 2-DOF vehicle model

Sideslip angle 5 and yaw rate y are selected as s-
tate variables. In the vehicle control system, the vehicle
lateral motion and torque balance equations are as fol-
lows:

p=ttin
mV ’ 0
_ Lnyf - LrFyr + Mz

1, ’
where L; and L, are the distance from centroid to the
front and rear axle respectively, I, is the moment of in-
ertia, Fyr and F}, are the lateral forces of the front and
rear wheels of vehicle respectively. The yaw moment of
the vehicle M, can be obtained as
w

Mz:<_Fxﬂ+Fxfr_Fxrl+Fxrr>§7 (2)
where Fiq, Fig, Fy, Fyr represent the tyre longitudi-
nal forces, and w is the tread of vehicle.

2.2 Tyre model

Considering that the motion state of vehicle is di-
rectly determined by the comprehensive effect of tyre
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force, the modeling for tyre characteristics is particu-
larly important. Among the typical tyre models, magic
formula tyre model is a relatively mature one for vehi-
cle stability control. It needs only one set of formula to
realize the longitudinal and lateral simulation effects of
the tyre. The magic formula is as follows:

F,; =D sin(C arctan(Ba; — E(Ba;—
arctan Ba,))), (3)
where ; is the slip angle of tyre, and C', B, E, D repre-
sent the curve shape factor, stiffness factor, longitudinal
stiffness and maximum factor respectively. Simplify the
formula to suit the controller, then a cubic polynomial
is obtained by Taylor expansion as follows:
Fyf = —QCf(l — Kaa?>af,
F,, = —2C.(1 — Kya?)ay,
K, and K, are obtained by tyre magic formula. Ac-

cording to the geometry of vehicle, the tyre sideslip an-
gles of the front and real wheels are as follows:

“4)

o =B+ 2y 5,
4 )
L,
a, =f3 v
In addition, although the pitch and roll motion of
vehicle are not included in the vehicle modeling, their
effects on the vertical load of the tyre still needs to be
considered. Therefore, the vertical load of four wheels
in an electric vehicle are calculated. The static loads F;
and F),. can be obtained as follows:
Ly Ly
= 2(Ls + Lr>mg, = 2(Ls + L)
the dynamic load AF,q, AF,q, AF,,,, AF,., are cal-
culated as follows:

mg, (6)

AR, = — maxh B mayhL,
’ 2(Le+ L)  w(Le+ L)’
AR, — — maxh mayhL,
- 2(Ls + L,)  w(Li+ L)’ o
AR, = mayxh B mayhLg
2Ly + L) w(Le+ L)’
AF. - maxh mayhLs
o 2Le+ L) w(Le+ L)’

where ay and a, are longitudinal and lateral accelera-
tion respectively, h is the height of center of gravity.

3 Control strategy

In this section, we will design an LMPC controller
based on ESO in detail. The control requirements and
schemes are introduced, and the reference model is p-
resented. In addition, the designed ESO is proved to be
stable.

The major reason for the instability of vehicle is that
the tyre cannot provide sufficient steering centripetal
force when the lateral force is saturated. The yaw rate

and sideslip angle of the vehicle are two important vari-
ables describing the vehicle posture, which are relat-
ed to vehicle stability closely. The yaw rate reflects the
steady-state turning characteristics, and the sideslip an-
gle reflects the stability of the vehicle. When the sideslip
angle is relatively small, the turning speed and turning
radius of vehicle are mainly determined by the yaw rate.
On the contrary, it will become the main factor which
changes the slip angle of tyre. Therefore, in the vehicle
yaw stability control system, the main control target is
to make the vehicle yaw rate track the desired yaw rate
and the sideslip angle as close to zero as possible. A
control structure of the vehicle yaw stability system is
shown in Fig.2.

T, s, Oy
5 ¥ O In-wheel
; Reference [, LMPC motor
DR =1 friodel 9" | controller | Ta> Tn electric
Ts, Ta | vehicle
d] dZ
Vi ESO | |B. 7, Vx
/)’,VT

Fig. 2 Control structure of vehicle yaw stability system

As the control structure diagram shows, the driver
module is responsible for simulating the driver’s driving
operation, and providing the steering wheel angle and
the driver’s desired torque. The vehicle reference mod-
el determines the desired yaw rate and sideslip angle
according to the steering wheel angle given by driver.
Two disturbance signals are generated after lineariza-
tion, and the disturbance observer is regarded as a multi-
variable ESO to compensate its real-time estimation to
the linear controller. ESO is combined with LMPC con-
troller as the overall controller of the system to provide
the front wheel angle and the driving torque of four
wheels.

3.1 Reference model

Since this paper studies on the integrated control
system of active front steer (AFS) and direct yaw con-
trol (DYC), the reference model is described as follows:

L1k
[ ®)
B* =0,
k and 7 are as follows:
B 20V
— mV2+2(CeL;s — C.L,)’ )
LV

T =

2(C¢L? + C.L?)’
where ¢ is steering wheel angle, C; and C., are the cor-
nering stiffness for front and rear wheel respectively, V'
represents the vehicle longitudinal speed, m is vehicle
mass and I, represents the moment inertia.
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3.2 LMPC controller design

Considering that the yaw rate and sideslip angle are
closely related to the vehicle yaw stability, they are cho-
sen as the state variables z = [3 7]T. Given that the
drive unit contains four in-wheel motors and active s-
teering devices, the front wheel steering angle and mo-

tor torque act as control inputs u = [0 Tya Tasr
Ti1 Tiwr]T. Moreover, the state variables are also s-
elected as the output variables y = [3 ~v]T. It is as-

sumed that the output variables 5 and -y can be obtained
by measurement or estimator.

Given that the vehicle yaw stability control sys-
tem belongs to nonlinear system and the nonlinearity is
mainly reflected in the lateral force of tyre as Equation
(4) presents, it is necessary to make the linearization for
LMPC design. Neglecting the nonlinear terms in Equa-
tion (4) directly, the linear expression of lateral force
can be obtained as Equation (10). The disturbance term
is defined as d = [d; d,]T, which represents the part
estimated by ESO after the linearization.

{ Fyf = —2Csay,

10
F,, = -2Ca,. (10)

As the system model introduced in Section 2, the
continuous-time model is obtained as follows:

(t) = Acx(t) + Beyu(t) + Bead(t), (an
yC<t> = ch<t>v
where
_QCf—I—QCr —QCfo—l—QCrLr_l
A mV mV?
¢ | =2C;Ls+2C. L, —2C¢L}-2C.L? |’
[ 1, LV
2
ﬁ 0 0 0 0
B — mV
o 20 Ly w —w w —w |’
IZ 2R/GIZ 2R/eIZ 2ReIz 2ReIz
10
pumci=]1 Y.

12)

To reduce static error, the continuous-time model is
converted into incremental model during the process of
discretization by Euler method:

{Ax(k—l—l) — AAz (k)4 ByAu(k)+ By Ad(k)
y(k) = CAz(k) + y(k — 1),

where

" (13)

Azx(k) =x(k) —z(k — 1),
Au(k) = u(k) —u(k — 1), (14)
Ad(k) =d(k) —d(k —1).

According to the MPC’s principle, m is defined as

control horizon and p is defined as predictive horizon,
m < p. In this paper, vehicle velocity and disturbances

estimated by ESO are supposed to be constant in predic-
tive horizon. Based on the model described in Equation
(13), incremental sequence of control input in p step at
time k is obtained as follows. Itis chosen as an indepen-
dent variable for constrained optimization problems:

Au(k)

Au(k +1)

AU (k) = ., (5)

[Au(k +m — 1)J .
the predicted control output sequence is written as

y(k +1[k)
y(k + 2[k)

x1

Y, (k+ 1[k) = .6

y(k+plk) | ..
it can be calculated as
Y,(k+ 1k) = S, Az (k) + 1y(k) + Sad(k)+
S AU (k) a7

where S, Sq and S, can be derived from the coeffi-
cients of Equation (13).

Moreover, according to the reference model intro-
duced in Section 2, the control output reference se-
quence is obtained as

r(k + 1|k)
r(k + 2|k)
Rk + 1]k) = . (18)
r(k + plk)

In consideration of control requirements, the out-
put Y, is supposed to track the reference sequence I
closely to achieve vehicle yaw stability. Therefore, the
deviation between them should be minimized as much
as possible, and the first cost function is obtained as

p
= 1Bk +ilk) = B (k) I+
(v(k +ilk) = 7" (k))* I}2] =
115 (Yye(k +1]k) — R(k+ 1)1 (19)
From another perspective, the second cost function
is obtained to achieve smooth control.

pXx1

m—1
Jo = 3 [Lur (A8 (k+i|i)2 + Do (ATa (k+ili)*+
=0
ATy (k +i]i)? + AT (k + i]i)*+
AT, (k +i]i)?)] = | TLAU (k)2 (20)

Furthermore, in order to minimize the energy con-
sumption and the longitudinal force of tyre under the
constraints, the third cost function can be obtained as

J3 = mil[pt<<Tﬂ<k + %’Ii>>2 n (Tf;(Rke-II;Zﬂﬁ)z_l_

=0 ,LLRerﬁ

Ta(k + i]7) T (k + i)
1 )* +( )%)] =
,LLRerrl ,LLRerrr

(
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I As(U(k — 1) + L,AUK)?, @D

where 1, R. and F; are the friction coefficient, wheel
radius and vertical load of the four wheels introduced in
Section 2, and F; are constant in the predictive horizon.
Through the derivation, Ay, I,, and It can be obtained
as follows:

AJ - diag{a/_j, s, G }4m><5m7 (22)
where
01000
00100
“=1o00 10| 23)
000O0T1

1, is defined as

IS><5
I = |foe oo 4
[I5X5 IS><5 IS><5J

as for I'r, define I't; = ([} X

m m th
RLEL ) x en we
can obtain that I't = diag{I'r1, I'ro, I'rs, I'ra}.

Considering that MPC can deal with multi-
objective optimization control problem, the three parts
mentioned above can be integrated as

J = ||Iy(Ype(k+1k) — R(k+ 1)) |+
| TLAU (k)| +
[T As(U(k = 1) + L AUR)P,  (25)
where I3, I, and It are weighting matrixes that can
be used to adjust the control performance. Ignore the

items which not related to AU (k), the equivalent form
of the optimization is obtained as

J = ATU()HAU (k) — G(k + 1|k)TAU (k),
(26)

where

Gk +1|k) = —2I AT I AU (k — 1)+
28 I T E,(k + 1|k),

E,(k+1|k) = R(k+ 1) — SyAz(k)—
Ty.(k) — SaAd(k),

H=ITATTTrp AL, + ITT +

SIS,

27)

In addition, aiming at achieving desired control per-
formance, the constraints should be considered in the
design of MPC. Due to motor torque saturation, the sys-
tem had better satisfy the following constraint:

Tmin < Tz < Tmaxa 1= fla f’r’,'f'l,'f"f'. (28)
Simultaneously, the sum of torques for each motor

are supposed to be equal to the total required one as fol-
lows:

ZE:TM ’L':fl,f’f',’f'l,’f"f'. (29)

3.3 ESO Design

Owing to the plant-model mismatch caused by
model linearization (Equation (10)), ESO is designed to
capture the plant-model mismatch and external distur-
bance. Then the estimated disturbance is compensated
in the LMPC controller to obtain a better performance.

For vehicle yaw stability control system in this pa-
per, two disturbance variables d; and ds in the linear
predictive model are supposed to be extended into two
new state variables w; = d; and ws = d» to form the
extended system as follows:

B B
¥ :|:Ac2><2 I2><2] Y 4
w1 Osxa Oaxa| |wi
CZJQ Wa
nl [0
fr
|:Bcu2><5:| Tﬁ _I_ 0 , (30)
O2><5

T, [pl J

[THJ P2

where A., B., are obtained by incremental model as E-
quation (11). In order to ensure the convergence of the
observer, assume that w; = p; and wy = p, are both
bounded by constant. For the extended linear predic-
tive model, the following form of multi-variable ESO is
designed.

. Of
21 21 Tf
2l =, |?| 4B, |Ta| +C, M, 31)
23 23 T €2
[24J [24J [THJ
where
—Lo; 0
A :|:A<22><2 12><2 C — 0 _L02
? 02><2 02><2 ’ ? [_Lll 0 J’ (32)
0 —Lq,
B
Bz — CUQ><5:| .
|: O2><5

For the multi-variable ESO designed above, we can
obtain that z1, 29, 23 and z4 are dynamic estimations of
8,7, d; and d, respectively. Define the dynamics of the
estimate error as

€1 21_5 €1 0

LTJ = {22_71 =A, {QQL_{O}’

I ) 14 Y
Ac — Leo szz]

A, =
{ —Ly O2x2

where LeO = diag{L01, LQQ}, Lel = diag{Lll, ng}.
As long as A, is chosen to be Hurwitz matrix, the dy-




946 Control Theory & Applications

Vol. 37

namics of the estimate error is input-to-state stable for
p1 and ps.
Remark 1
based MPC was reported in [24—27], which utilizes numerical
solutions in the optimization problem. The offset-free MPC

The related works of disturbance observer

by augmenting the system with disturbance model was stud-
ied in [24] and [25] for linear systems, in [26] for nonlinear
systems, and in [27] for reference tracking problems. These
works took the disturbance estimation and its prediction into
account in the receding optimization process and achieved ze-
ro offset. The recursive feasibility of the optimization problem
was guaranteed by tightening the terminal region and the input
constraint was studied in®® for tracking the wheeled mobile
robot. Based on aforementioned methods, the stability analysis
of the combination of LMPC and ESO will be our future work
of the paper.

4 Simulation

In this section, the simulation results in Simulink/
MATLAB are presented to verify the method proposed
in this paper. A seven degrees of freedom (7-DOF) ve-
hicle model including the yaw of longitudinal, lateral
and vertical of the vehicle and the rotation of 4 wheels
is built on the simulation platform as follows in Fig.3.
The specific model parameters are shown in Table 1.

Lr Lr

Fig. 3 7-DOF vehicle model

Table 1 Model parameters

Parameter Value Unit
vehicle mass m 1359.8 kg
vehicle yaw moment of inertia I, 1992.54 kg-m?
tread of vehicle w 1.418 m
centroid to front axle distance Ly  1.0628 m
centroid to rear axle distance L, 1.4852 m
cornering stiffness at front tire C; 23540  N/rad
cornering stiffness at rear tire C, 23101  N/rad
wheel radius R, 0.29 m
motor maximum torque 7}, 187 Nm

The reference steering wheel input curve is given in
Fig. 4. Set the sampling time to 10 ms. The predictive

horizon p and control horizon m are equal to 10 and 3
respectively. As for the observer parameter, they are set
as L01 = 20, LQQ = 40, L11 = 100, L12 = 200, then
it satisfies the condition that A, is Hurwitz matrix.

015 T T T T T
2010
—
L
5 005
2 0.00
[+
5 —0.05
2
@ -0.10
1 1 1 1 1
0 1 2 3 4 5 6

t/s

Fig. 4 Steer input curve

For different driving maneuvers, the effectiveness
of the controller is analyzed. In the first maneuver, the
initial speed is 80 km/h, and friction coefficient is set
to 0.8. The designed LMPC controller based on ES-
O is applied to the vehicle yaw stability control system
as shown in Fig.5. In addition, the result of an NMPC
controller is presented for comparison in Fig.6.

0.015 T T T T T
0.010
0.005
0.000
-0.005
—0.0100

Beta / rad

0 I O 1 i
1.011.03
T

o
i

=
[\
T

— Actual yaw rate
---Expected yaw rate

Yaw rate / (rad-s™)
S
o

_0‘2 = -
0.4 ' ' ' : -
0 1 2 3 4 5 6
t/s
Fig. 5 Simulation results of LMPC based on ESO when
pn=0.8

In each figure, dashed line represents the expected
output of system, and the solid one represents the actual
output. The comparison shows that the performance of
the two controllers are basically the same. On the basis
of analysis, it is shown that the tyre lateral force is in
the linear area consistently in this maneuver.

To excite the nonlinearity of the lateral tyre force,
the friction coefficient is changed to 0.4 as the second
maneuver. Then the simulation results form two con-
trollers are presented in Figs.7-8.

Comparing the control performance of LMPC con-
troller based on ESO with NMPC controller, it can be
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obtained that they are basically the same although in
such nonlinear situation. Furthermore, in order to com-
pare the tracking performance more obviously, the error
curves between expected yaw rate and the actual one are
presented in Fig.9.

0.015
0.010
0.005
0.000
-0.005
-0.010

Beta / rad

<o
~

T T
—Actual yaw rate
---Expected yaw rate

=]
[\
T

Yaw rate / (rad-s™")

| |
S = =
> b o

o

—_
)
w
~
(9
=N

t/s
Fig. 6 Simulation results of NMPC when p = 0.8

0.04 T T T T T

0.02
0.00

Beta / rad

-0.02

70.04 1 1 1 1 1
0 1 2 3 4 5 6

t/s

S
~

T T T
—— Actual yaw rate
---Expected yaw rate

=
[\
T

|
=
)

Yaw rate / (rad-s™)
(=]
(=)

|
=
i

(=]

—_
[\
w
N
W
[=)}

t/s
Fig. 7 Simulation results of LMPC based on ESO when
n=204

From the error curves, it proves that the proposed
LMPC based on ESO control strategy has the ability
to improve the control performance compared to LM-
PC. What is even more exciting is that this strategy can
achieve as good control performance as NMPC. In ad-
dition, to make the comparison more intuitively, the s-
tandard deviation of each controller is calculated as fol-
lows:

(34)

where e; = v, — ..

After the calculation, the standard deviations from
these three controllers are obtained successively. The
results of LMPC, NMPC and LMPC based on ESO are
0.0287, 0.0237 and 0.0238 in turn.

In the case of first maneuver, the lateral tyre force is
always in linear area, so that the predictive model is ba-
sically a linear model. Nevertheless, in the case of sec-
ond maneuver, the friction coefficient is reduced, and it
leads the vehicle to a limit maneuver during the opera-
tion, then the lateral tyre force gets the nonlinear term
occurred as a result. In this situation, single LMPC can
not track the desired yaw rate well and make the side-
slip angle close to zero. By contrast, the LMPC con-
troller based on ESO proposed in this paper can basical-
ly achieve the control performance consistent with N-
MPC controller. Owing to the fact that the plant-model
mismatch and external disturbance can be captured and
compensated in the LMPC controller, the control per-
formance is improved by using a disturbance feedfor-
ward control. However, this strategy proposed in this
paper is only applicable to the weakly nonlinear sys-
tems with slow changing disturbances.

0.04 T T T T T
0.02
0.00

Beta / rad

-0.02

_0.04 1 1 1 1 1

t/s

<o
~

T T T
— Actual yaw rate
-—-Expected yaw rate |

Yaw rate / (rad-s™")
s o
=

|
<
S

o

0.08
0.06
0.04
0.02
0.00 {
-0.02
-0.04
-0.06

-0.08
0

Error / rad

t/s

---LMPC —NMPC
e LMPC based on ESO
Fig. 9 Tracking error with friction coefficient 0.4 by LMPC,
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In order to verify the advantages of the method pro-
posed in this paper in computational performance, the
comparison results of the solution time on MATLAB
platform of LMPC based on ESO and NMPC are pre-
sented as shown in Fig.10. The simulation platform is
configured as 64-bit Windows 7 PC (CPU Intel Core
17-4790@3.60 GHz, 8 GB memory), MATLAB2014a.
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Fig. 10 The comparison results of solution time

The results show that the time of solving one opti-
mization problem using NMPC is about 0.35 s, while it
is about 0.025 s using LMPC based on ESO. It can be
seen that computational time can be greatly reduced on
the premise of ensuring consistent control performance.

5 Conclusion

A novel method of LMPC controller based on ESO
is proposed for vehicle yaw stability control system in
this paper, which can reduce the computational burden
to some extent compared to NMPC controller in practi-
cal application. ESO is used to estimate the disturbance
to compensate modeling error caused by linearization,
and its stability is proved simultaneously. The simula-
tion results demonstrate that the nonlinear term would
appear when the vehicle is approaching extreme condi-
tions. At this time, ESO-based LMPC can meet the con-
trol requirements as NMPC. The sideslip angle is close
to zero, and the yaw rate can track its reference value
well, which satisfy the control requirements effectively.
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