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Abstract— Automated driving control of vehicles is consid-
ered, where both longitudinal and lateral dynamics are taken
into account. Firstly, the vehicle dynamics are approximated by
a global linear model obtained by Koopman operator theory.
Then, a linear model predictive controller is designed, in which
the global linear model is used to predict vehicle dynamics.
Thus, it can reduce the computational burden accordingly. The
state of the preceding vehicle is used as the reference of the
following vehicle to complete the automated driving control.
Finally, the efficacy of the proposed strategy is confirmed
through simulation.

I. INTRODUCTION

Connected and Automated Vehicles (CAVs) have signif-
icant advantages in improving traffic efficiency, and have
attracted widespread attention. The current research on ve-
hicle control can be divided into lateral control, longitudinal
control, and lateral and longitudinal coupling control. Lateral
control [1], [2] mainly refers to track a reference path by
controlling the vehicle steering system. The longitudinal
control [3], [4] mainly refers to the accurate control of the
longitudinal velocity by controlling the driving force and
braking force of vehicles. Pure longitudinal or lateral control
ignores the strong coupling characteristics of vehicle lateral
and longitudinal dynamics. At present, decoupling controller-
s [5]-[7] are often adopted in lateral and longitudinal control
respectively, but they will inevitably generate system errors,
making it difficult to obtain good control effects.

The vehicle is a complex coupled dynamic system with
multiple inputs and multiple outputs, which needs to sat-
isfy various dynamic constraints. Model Predictive Control
(MPC) has good robustness and advantages in dealing with
constraints. Thus, it has been widely used in vehicle control.
Linearization is commonly used in Nonlinear Model Predic-
tive Control (NMPC), which can effectively avoid solving
nonconvex optimization problems and reduce the computa-
tional burden. However, local linearization [8] transforms the
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nonlinear model only near the operating point based on Tay-
lor expansion. Multi-model method [9] is difficult to ensure
the stability of model switching. Feedback linearization [10]
requires precise mathematical models, and is difficult to deal
with the uncertainties in the models.

The development of the Koopman operator theory [11]
introduces a new idea for the linearization. Its basic idea is
to linearize the nonlinear system globally without sacrificing
any information by lifting it into an infinite-dimensional lin-
ear space. To apply the Koopman operator theory to practice,
the infinite-dimensional Koopman operator is approximated
by the data-driven Dynamic Mode Decomposition (DMD)
and the Extended Dynamic Mode Decomposition (EDMD)
in finite dimensions. The basic characteristics of the DMD
algorithm [12] are singular value decomposition (SVD) and
balanced truncation. Because of its simple mathematical
expression and easy implementation, the DMD algorithm has
been widely used in the analysis of complex flow phenome-
na. In order to apply the DMD algorithm to nonlinear con-
trolled systems, Proctor et al. [13] proposed the algorithm of
dynamic mode decomposition with control (DMDc). Studies
[14]-[16] discussed the feasibility of the DMDc algorithm in
different controlled systems. The EDMD algorithm [17] is
an extension of the DMD algorithm. When approximating
the Koopman operator, it is necessary to select the lifting
functions to lift the dimension of the system’ state, and
the lifted state has the characteristics of linear evolution.
In practical application, the selection of lifting functions is
subjective, and the accuracy of the linear model based on the
EDMD algorithm will be affected.

At present, researchers have tried to use the Koopman
operator theory as a new idea to control the vehicles, in
which the Koopman operator is used to approximate the
vehicle dynamics and the controller is designed by linear
control strategy. However, Cibulka et al. [18] only linearized
the vehicle model and did not design a controller. The
obtained linear model had limited prediction effect on vehicle
state when the Koopman operator was approximated by the
EDMD algorithm in [19]. Svec et al. [20] only carried out
model identification and controller design for the tireless
single-track vehicle model. The MPC scheme designed in
[21] did not achieve good performance when the expected
longitudinal velocity remained unchanged, and the expected
yaw rate changed.

In this paper, an automated driving control method for
vehicles based on the Koopman operator is proposed. The
vehicle dynamics are approximated by the Koopman linear
model identified by the DMDc algorithm, and the linear mod-
el predictive controller is designed. The preceding vehicle’s
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state is transmitted to the following vehicle as the reference
to realize the real-time control of CAVs.

The main contributions of this paper are as follows:

• When establishing the nonlinear vehicle model, the tire
model working in the linear region is adopted. DMDc
algorithm is used to approximate the vehicle model.

• Compared with [20] and [21], the controller designed in
this paper can accurately track the yaw rate and ensure
better performance under different scenarios.

This paper is organized as follows. The vehicle model is
introduced in Section II. The Koopman operator theory and
the DMDc algorithm for vehicle systems are introduced in
Section III. The model predictive controller based on the
global linear model is designed in Section IV. The simulation
results are shown in Section V. Finally, the work of this paper
is summarized in Section VI.

II. VEHICLE MODEL

Only the vehicle’s longitudinal, lateral, and yaw motions
are considered in this paper. Set the vehicle to front-wheel
drive, and the vehicle dynamics model considering the lateral
and longitudinal coupling is established, as shown in Fig. 1.

According to Newton’s second law, the vehicle longi-
tudinal, lateral and yaw dynamics equations [22] can be
expressed as: mv̇x−mvyω = Fx f +Fxr−CAv2

x
mv̇y +mvxω = Fy f +Fyr
Izω̇ = aFy f −bFyr

(1)

where vx, vy and ω are the longitudinal velocity, lateral
velocity and yaw rate of the vehicle, respectively, m is the
mass of the vehicle, Iz is the moment of inertia around the
yaw axis, a and b are distances of wheels from the center of
gravity, Fx f and Fyr are the longitudinal forces of the front
and rear wheels, Fy f and Fyr are the lateral forces of the front
and rear wheels, and CA is the air resistance coefficient.

X
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yv

w

a

b

ra

d

fa

crF
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Fig. 1. Vehicle dynamics model

Assume that the tire works in the linear region. The small
angle approximation method [23] is used to calculate tire
force. Lateral forces of the front and rear tires are: Fy f =Cc f

(
δ − vy+aω

vx

)
Fyr =Ccr

(
bω−vy

vx

) (2)

where Cc f and Ccr are the cornering stiffnesses of the
front and rear tires, respectively, and δ is the front steering
angle. Denote Fx =Fx f +Fxr. Combining the above equations,
the vehicle dynamics model of the lateral and longitudinal
coupling is as follows:


v̇x = vyω + 1

m

(
Fx−CAv2

x
)

v̇y =−vxω + 1
m

(
− (Cc f +Ccr)vy

vx
+

(Ccrb−Cc f a)ω

vx
+Cc f δ

)
ω̇ = 1

Iz

(
− (Cc f a−Ccrb)vy

vx
− (Cc f a2+Ccrb2)ω

vx
+Cc f aδ

)
(3)

Selecting the state of the system as x =
[

vx vy ω
]T

and the control input as u =
[

Fx δ
]T , the vehicle dynam-

ics model (3) is rewritten as:

ẋ = f (x,u) (4)

Remark 1: The DMDc algorithm introduced in Section III
for approximating the Koopman operator is data-driven. The
vehicle model (3) is established to carry out the simulation
experiments in Section V and construct the training dataset
required by DMDc algorithm. The model itself ignores much
information. When it is applied to the vehicle system in the
future, the data of vehicles can be directly obtained. Thus,
the data-driven, model-free method can establish the linear
vehicle model.

III. KOOPMAN OPERATOR

A. Koopman Operator for Vehicle systems

The core idea of the Koopman operator theory is to ex-
press the evolution of nonlinear dynamical systems through
infinite-dimensional linear operators [11]. Discretizing (4),
the discrete nonlinear vehicle dynamics system is:

xk+1 = f ′ (xk,uk) (5)

where xk ∈ R3 and uk ∈ U ⊆ R2 are the vehicle system’
state and control input at time step k, and f ′ : R3×R2→R3

represents a nonlinear mapping.
Define κ as the infinite-dimensional Koopman operator

acting on the observation function g. Under the action of
κ , the nonlinear evolution of the vehicle system (5) can be
transformed into a linear evolution:

κg(xk) = g(xk+1) = g
(

f ′ (xk,uk)
)

(6)
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B. DMDc Algorithm
The traditional DMD algorithm is only suitable for de-

scribing autonomous systems. To eliminate this limitation,
the DMDc algorithm [13] extends the traditional DMD al-
gorithm to controlled systems. This subsection will complete
the construction of the global linear model based on the
DMDc algorithm.

Based on the DMDc algorithm, the vehicle nonlinear
system (5) can be expressed as the discrete linear controlled
model: {

x̂k+1 = ADMDx̂k +BDMDuk
ŷk =CDMDx̂k

(7)

where x̂k ∈ R3 and ŷk ∈ R3 are the state and output of the
constructed linear model, respectively, the matrix CDMD is set
to I3×3, and the matrices ADMD ∈R3×3 and BDMD ∈R3×2 are
the parameter matrices that need to be identified.

The DMDc algorithm is a data-driven algorithm. To iden-
tify the matrices ADMD and BDMD, the input and output data
of the vehicle nonlinear system are first collected, and the
following data matrix is constructed:

X = [x1, · · · ,xkmax ]
Y = [x2, · · · ,xkmax+1]
U = [u1, · · · ,ukmax ]

(8)

where X and Y are the data matrices formed by the states of
the vehicle sysytem (5) at the adjacent moment, U is the data
matrix formed by the control input, and kmax is the number
of snapshots.

According to the Koopman linear model (7), the matrix Y
can be expressed as:

Y =
[

ADMD BDMD
][ X

U

]
= GΩ (9)

where G =
[

ADMD BDMD
]

is the finite-dimensional ap-
proximate matrix of the Koopman operator, and Ω =[

X U
]T is the reconstructed augmented data matrix.

Perform singular value decomposition(SVD) on the matrix
Ω, and define the truncated rank of SVD as p. The dimension
of the vehicle model (5) established in this paper is relatively
low, so p is set to 3. The matrix Ω can be expressed as:

Ω≈ Ũ Σ̃Ṽ T (10)

where Ũ ∈ R5×3 is the unitary matrix, and Σ̃ ∈ R3×3 is the
diagonal matrix.

To get the matrices ADMD and BDMD from the matrix G,
decompose the matrix Ũ , we can get:

Ũ =

[
Ũ1
Ũ2

]
(11)

where Ũ1 ∈ R3×3 and Ũ2 ∈ R2×3.
The matrices ADMD and BDMD in the Koopman linear

model can be expressed as:

ADMD = YṼ Σ̃−1ŨT
1

BDMD = YṼ Σ̃−1ŨT
2

(12)

The finite-dimensional approximation of the Koopman
operator using the DMDc algorithm is summarized in Al-
gorithm 1.

Algorithm 1 Approximation of Koopman operator with the DMDc
algorithm

1) Collect the input and output data of nonlinear vehicle systems, and
construct the following data matrices:

X = [x1, · · · ,xkmax ]
Y = [x2, · · · ,xkmax+1]
U = [u1, · · · ,ukmax ]

2) Construct the augmented matrix Ω:

Ω =
[

X U
]T

3) Perform singular value decomposition(SVD) on matrix Ω

Ω≈ Ũ Σ̃Ṽ T

4) Decompose the matrix Ũ into Ũ1 and Ũ2, and calculate the matrices
ADMD, BDMD.

ADMD = YṼ Σ̃−1ŨT
1

BDMD = YṼ Σ̃−1ŨT
2

IV. CONTROLLER DESIGN

The vehicle system is a nonlinear system with strong cou-
pling characteristics. In this paper, the identified Koopman
linear model is used to design a linear model predictive
controller, which takes the velocity information of the pre-
ceding vehicle as the reference of the following vehicle. The
MPC algorithm based on Koopman operator is summarized
in Algorithm 2, and the control system’s framework is shown
in Fig. 2.

The optimization problem of the linear model predictive
controller designed in this paper is as follows:
Problem 1.

minimize
Uk

J (x̂k,rk,Uk) (13)

s.t.

x̂k+i+1|k = ADMDx̂k+i|k +BDMDuk+i|k
ŷk+i|k =CDMDx̂k+i|k
x̂k|k = xk
x̂k+i|k ∈ [x̂min, x̂max]
uk+i|k ∈ [umin,umax]

(14)

where x̂k+i|k and ŷk+i|k are the predicted state and predicted
output based on the Koopman linear model, respectively, N is
the prediction horizon, Uk =

[
uk|k,uk+1|k, . . . ,uk+N−1|k

]
is the

sequence of the control input, rk =
[
rk|k,rk+1|k, . . . ,rk+N−1|k

]
is the reference sequence, Q and R are positive semi-definite
weight matrices, x̂min/max and umin/max are constraints of the

Algorithm 2 MPC Based on the Koopman Operator

1: for k = 0,1, . . . do
2: Obtain the current state xk of the vehicle system
3: Obtain the state x̂k|k of the Koopman linear model
4: Solve Problem 1, and obtain U∗k
5: Apply u∗k|k to the vehicle system

1819
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( )1 ,k k kx f x u+ = min J constraints+

Vehicle dynamics MPC

optimal control input

current state kx

 preceding vehicle state
kr

*

|k ku

Fig. 2. Control block diagram of model predictive controller based on
Koopman operator

system state and control input, and the cost function is as
follows:

J (x̂k,rk,Uk) =
N−1

∑
i=0

[∥∥ŷk+i|k− rk+i|k
∥∥2

Q +
∥∥uk+i|k

∥∥2
R

]
(15)

Denote U∗k =
[
u∗k|k,u

∗
k+1|k, . . . ,u

∗
k+N−1|k

]
and J∗

(
x̂k,rk,U∗k

)
as the optimal control sequence and the related optimal cost
function. Apply the first element of U∗k , i.e., u∗k|k to the
following vehicle.

V. SIMULATION RESULTS

To evaluate the efficiency of the global linear model and
the designed linear model predictive controller, simulation
experiments under different driving scenarios are performed
in the Matlab R2016b environment. The Koopman linear
model, which can approximate vehicle dynamics, is iden-
tified based on the DMDc algorithm. The parameters of the
vehicle model in this paper are shown in Table I.

A. Data Collection and Model Identification

The data of the vehicle system must first be collected
before utilizing the DMDc algorithm to construct the Koop-
man linear model. Set the sampling period Ts to 10ms,
and use the Runge-Kutta method to discretize (4). Select
2000 trajectories with the time scale of 200 steps to form
the dataset. To obtain data that can accurately reflect the
traits of vehicles, the number of trajectories in the dataset is
divided equally to form the straight driving subdataset and

TABLE I
VEHICLE PARAMETERS

Parameter Value Unit

CA 1.12 −
m 1024 kg
g 9.8 m/s2

Iz 3216 kg ·m2

a 1.04 m
b 1.28 m

Cc f 66900 N/rad
Ccr 62700 N/rad

the curve driving subdataset, respectively. The settings of the
two subdatasets are as follows:

• Straight driving subdataset: The initial values of longi-
tudinal velocity vx, lateral velocity vy, and yaw rate ω

are randomly selected in [1,30]m/s, [−0.5,0.5]m/s, and
[−0.5,0.5]rad/s. The longitudinal force Fx is randomly
selected in [−5000,5000]N, and the front steering angle
δ is randomly selected in [−0.001,0.001]rad.

• Curve driving subdataset: The initial values of longi-
tudinal velocity vx, lateral velocity vy, and yaw rate ω

are randomly selected in [1,30]m/s, [−2,2]m/s, and
[−2,2]rad/s. The longitudinal force Fx is randomly
selected in [−5000,5000]N, and the front steering angle
δ is randomly selected in [−1,1]rad.

B. Model Validation

To analyze the performance of the identified Koopman
linear model, simulation experiments are carried out under
scenario 1 and 2 to compare the states of the linear system
constructed by the Koopman operator and the actual vehicle
system. The two scenarios are set as follows:

• Scenario 1 (longitudinal motion): The initial state of the
vehicle system is set to

[
20 0 0

]T , the longitudinal
force Fx is set to 2000N, and the front steering angle δ

is set to 0.
• Scenario 2 (lateral and longitudinal coupling mo-

tion): The initial state of the vehicle system is set
to
[

20 0.5 −0.35
]T , the longitudinal force Fx is

set to −2000N, and the front steering angle satisfies
δ = 0.1sin(0.4πt).

To objectively reflect the established Koopman linear
model’s accuracy, the Root Mean Square Error (RMSE) is
used as an objective evaluation index, i.e.,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
19

20

21

22

23

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

Fig. 3. Prediction results of longitudinal and lateral velocity and yaw rate
(Scenario 1)
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0
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Fig. 4. Prediction results of longitudinal and lateral velocity and yaw rate
(Scenario 2)

RMSE =

√
∑k
∥∥xpred (k)− xtrue (k)

∥∥2
2√

∑k ‖xtrue (k)‖2
2

×100% (16)

where xpred (k) and xtrue (k) are the state estimation based on
the global linear model at time step k and the actual vehicle
system state, respectively.

Fig. 3 and Fig. 4 are the simulation results under two
scenarios. The RMSE under the two scenarios are 0.89%
and 1.57%, respectively. The global linear model obtained
by the Koopman operator can accurately approximate the
vehicle dynamics.

C. Automated driving with guidances

Simulation experiments are performed in different sce-
narios to confirm the effectiveness of the designed model
predictive controller. The two control scenarios are set as
follows:

• Control scenario 1: Set the expected values of lateral
velocity vy and yaw rate ω to 0, and the longitudinal
velocity vx is constantly changing.

• Control scenario 2: Set the longitudinal velocity vx as
a fixed value, and the expected values of the lateral
velocity vy and yaw rate ω are constantly changing.

Remark 2: It is assumed in control scenario 1 and 2 that
the state of the preceding vehicle (i.e., the desired state)
and the following vehicle are identical at the initial moment.
When the state of the preceding vehicle changes, the state
of the following vehicle changes accordingly.

Set the prediction horizon N to 10. The constraints of vx,
vy and ω are [−35,35]m/s, [−1,1]m/s, and [−1,1]rad/s.
The constraints of the longitudinal force Fx and the front
steering angle δ are [−5000,5000]N and [−1,1]rad. The
weight matrices are set as follows:

0 2 4 6 8 10 12 14 16 18 20
0

10

20

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

Fig. 5. Control effect of vehicle controller (Control scenario 1)

0 2 4 6 8 10 12 14 16 18 20

10

20

30

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

Fig. 6. Control effect of vehicle controller (Control scenario 2)

Q =

 50000 0 0
0 5000 0
0 0 500000


R =

[
0.001 0

0 0.1

] (17)

Control scenario 1 simulates vehicles driving longitudi-
nally with variable velocity. Fig. 5 shows that the following
vehicle can accurately track the desired longitudinal velocity
and ensure that the lateral velocity and yaw rate are close to
zero.

Control scenario 2 simulates the steering and lane chang-
ing scenarios of vehicles. The designed model predictive
controller can quickly and effectively track the preceding
vehicle’s changing lateral velocity and yaw rate, as shown in
Fig. 6.

The processor model is Intel(R)Core(TM) i7-10700CPU
@2.90 GHz, and the RAM is 16GB. The optimization
problem in this paper is solved by qpOASES [24]. The
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Fig. 7. Computation time of optimization problem

computation time of the optimization problem of the control
scenario 1 and 2 is shown in Fig. 7. The average computation
time is 0.117 ms and 0.120 ms, respectively.

VI. CONCLUSION
In this paper, data-driven model identification and control

strategy based on the Koopman linear model identified by
the DMDc algorithm is applied to the vehicle system. The
vehicle dynamics whose tires work in the linear region are
approximated by the Koopman linear model. Simulation
experiments under different driving scenarios verify the
effectiveness of the DMDc algorithm in the application of
vehicle models. The linear model predictive controller is
designed based on the Koopman linear model, which avoids
the solution of nonconvex optimization problems and reduces
the computational burden accordingly.
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