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A B S T R A C T

The travel behavior of electric vehicle (EV) users is highly random, and the interests of EV charging station
investors interact with the needs of charging users. The increasing number of electric vehicles (EVs), cities
have higher requirements for EV charging station location planning. This paper proposes a multi-objective EV
charging station siting method based on trip chains. First, the EV trip chain is used to analyze its dynamic
travel process, construct probabilistic models, and simulate its charging behavior using Monte Carlo (MC)
method to obtain the time–space distribution of EV users’ charging demand. Then, the Whale Optimization
Algorithm (WOA) and the Non-dominated Sorting Whale Optimization Algorithm (NSWOA) are used to solve
problems that aim to optimize the cost for the investor and improve user satisfaction as objective functions.
Finally, taking a region in Nanjing as an example, the simulation concluded that multi-objective siting planning
optimizes the investor cost by 9.22% compared with single-objective siting planning, reduces the user’s station-
seeking time by 47.91%, charging waiting time by 65.83%, which verifies the method has the advantages of
optimizing the investment cost and enhancing the user’s satisfaction, and it provides decision-making ideas
for the study of EV charging station siting and layout.
1. Introduction

In recent years, EVs have gradually become an important alternative
to traditional fuel vehicles due to their advantage of not emitting
pollutant gases, and have been rapidly promoted worldwide, as shown
in Fig. 1, which shows the trend of changes in the global ownership
of EVs. However, with the increasing number of EV users, there is
a growing imbalance between their infrastructure construction [1],
leading to the frequent occurrence of phenomena such as the difficulty
of finding piles for EVs in certain areas [2], so EV charging stations,
as an important part of the infrastructure of EVs, the planning and
construction of which is of great significance to the popularization of
EVs [3]. According to the Guiding Opinions on Further Building a High-
Quality Charging Infrastructure System issued by the General Office of
the State Council of China, the charging infrastructure construction
in China should be based on the principle of ‘‘scientific layout and
moderate overrun’’ [4], Therefore, how to scientifically plan the layout
of EV charging stations has become an important research direction to
accelerate the integration of transportation and energy, meanwhile help
‘‘carbon-neutral’’.
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Scholars in various countries have achieved many results in the
siting of EV charging stations. Literature [5] establishes an EV charg-
ing station siting model with the objective of minimizing the cost
of charging stations and the economic loss to users. The time–space
distribution of EVs in a region is studied based on the historical
data of EV stock, and then realizes the scientific layout of charging
stations. Literature [6] proposes a Mixed-integer nonlinear optimization
method for optimizing the layout and size of fast charging stations,
considering the cost of charging station exploitation. Literature [7]
conducts a siting study with the objective function of minimizing the
overall social cost includes the cost of power loss during EV travel
and the cost of network loss in the distribution network. In addition
to considering the economic costs, traffic flow is also one of the key
factors to be considered in the scientific layout of charging stations
Literature [8] analyzes the characteristics of changes in the number
of vehicles in residential, work, and commercial areas during different
time periods and addresses the problem of traffic congestion caused
by charging queues. Literature [9] proposes an optimization planning
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Fig. 1. Global EV stock 2010–2022.

method for public charging stations based on the spatial distribution
of traffic flow, by comprehensively considering the characteristics of
urban traffic flow distribution and the operational constraints of the
power distribution network. The popularization and development of
EVs not only depend on the scientific layout of charging stations, but
also require consideration of the normal operation of the distribution
network. Literature [10] establishes an evaluation model for minimum
network loss, minimum load fluctuation rate, and minimum voltage
deviation index of the distribution network, and then combines it with
the traffic network model to achieve a station construction plan that
has the least impact on the operation of the distribution network. Lit-
erature [11] establishes a probabilistic model of charging load demand
for multiple types of EVs by studying the charging characteristics of
different types of EVs and analyzes how to reduce the load impact
brought by EV charging to the distribution network. Literature [12]
studies how EV can scientifically access the distribution network to
achieve the purpose of peak shaving and valley filling with the premise
of reducing load fluctuation of the distribution network, and with the
optimization objectives of reducing user charging cost and peak–valley
difference of the distribution network load.

In terms of charging load prediction, literature [13] proposes an
urban charging load prediction model with a real-time simulation
input interface, which fully considers the impact of EV locations and
the occupancy status of public charging facilities on EV charging be-
havior, achieving accurate load prediction. Literature [14] presents a
spatiotemporal prediction model for EV charging load under the ‘‘EVs-
Traffic-Distribution’’ mode. It establishes an individual EV charging
model and a road traffic model that considers the characteristics of
traffic network topology, the speed-flow relationship, and regional at-
tributes, and then conducts charging load prediction. Literature [15] in-
troduces the concepts of road segment impedance and node impedance
in load forecasting, fully considering the time-varying characteristics
of traffic information and the impact of intersections on EV travel.
To improve prediction accuracy, Literature [16] proposes a charging
load prediction model based on an improved random forest regression
(RFR) algorithm enhanced by the sparrow search algorithm (SSA).
Literature [17], from the perspective of vehicle ownership, uses the
GM(1,1) model to estimate this factor and further predicts the load
demand for EVs connected to the grid.

The main methods currently used for solving the site selection
model are exact algorithms, heuristic algorithms, and deep learning
algorithms. Literature [18] investigates the multi-stage stochastic prob-
lem of EV fast charging station siting under demand uncertainty and
employs the Benders decomposition algorithm to solve, it is found to
outperform a stand-alone mathematical planning solver in solving this
type of problem, but the method is unable to handle the siting problem
2

considering charging station capacity constraints and congestion. Liter-
ature [19] combines the particle swarm optimization (PSO) algorithm
with the direct search method, which ensures its convergence and ac-
curacy while solving the results quickly. Combining the PSO algorithm
with other algorithms or improving the PSO algorithm is a commonly
used method to study the charging station siting at present. Litera-
ture [20] proposes a recurrent neural network algorithm integrated
with the firefly algorithm, which improves the global optimization
capability for effective charging station siting and capacity setting
purposes. Although deep learning algorithms can effectively solve the
complex charging station siting problem in reality, that required data
size is large, training time is long, and the model is unstable.

Based on this, this paper attempts to use ArcGIS software and the
open-source mapping platform OSM (Open Street Map) to obtain the
road network of the study area, after that combines it with the trip
chain theory and the MC method to construct an EV charging load
forecasting model. This model is used to obtain EV trip data and
charging data. By combining the trip chain theory with the MC method,
it fully considers the highly random nature of EV travel behavior [21],
and the load forecasting model addresses the difficulty in obtaining
EV travel and charging historical data. In addition, the application
of ArcGIS makes this research method more practical. Based on the
data obtained from the charging load forecasting model and relevant
constraints, this paper also establishes a multi-objective EV charging
station location model with the objectives of minimizing the charging
station investment cost and maximizing user satisfaction, intuitively
solving the imbalance between the investment cost for charging station
investors and EV user satisfaction. When solving the location model,
considering that exact algorithms cannot handle location problems with
related constraints and that traditional PSO algorithms have low solu-
tion efficiency, so heuristic algorithms WOA and NSWOA are used to
improve the efficiency and accuracy of solving the model. In summary,
this paper proposes an NSWOA-based method for locating EV charging
stations based on dynamic trip chains, addressing some existing issues
in related research and providing a research approach for charging
station location.

The main work and innovations are the following:

• Considering the randomness of user travel, statistical character-
istics of EV travel chains at the group level were analyzed using
large sample data to describe the dynamic travel process and user
charging behavior. A probabilistic model was then developed, and
MC simulations were employed to determine the spatiotemporal
distribution of charging demand, which maximally reflects the
autonomy of user travel and charging behavior.

• Aiming to balance the investment cost for investors and the
convenience needs of users, the layout planning of charging sta-
tions was studied. The study mainly considered the impact of
economic factors such as land costs, infrastructure construction
costs, and operating costs, as well as user convenience needs, on
the layout of fast-charging stations. A multi-objective site selec-
tion planning model was proposed, which minimizes the total
investment cost from the investor’s perspective while maximizing
user satisfaction.

• Taking a certain area in Nanjing as an example, the road net-
work node map was obtained via ArcGIS and OSM. Based on
the established model, WOA and PSO were applied to solve
the single-objective planning model, while NSWOA and Multi-
Objective Particle Swarm Optimization (MOPSO) were adopted
to solve the multi-objective planning model. By analyzing the
investment costs and user charging convenience, the feasibility of
the proposed method was verified, and it was also demonstrated
that NSWOA performed well in the research on the site selection
of EV charging stations.
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Fig. 2. Technological route.
The rest of this paper is structured as follows: Section 2 analyzes
the travel chains of EVs and user charging behavior, utilizing MC
simulations to construct a charging load prediction model. Section 3
establishes the objective functions. Using the travel and charging data
from Section 2, a multi-objective location model for EV charging sta-
tions is developed, taking relevant constraints into account. Section 4
includes a case study for validation. Finally, Section 5 concludes the
work. The technical route of the work done in this paper is shown in
Fig. 2.

2. EV charging load prediction model

The modeling of EV users’ travel and charging behaviors is af-
fected by many factors, such as time-characterized variables, space-
characterized variables, EV state of charge, and charging users’ mileage
anxiety. Based on the analytical description of these key factors, this
paper establishes a complex dynamic system to simulate the charging
behavior of EV users and predicts their charging load demand.

2.1. Trip chain analysis

There are many uncertainties in the analysis of EV users’ travel
behavior, which includes key factors such as origin and destination,
departure time, arrival time at destination, and distance traveled [22],
so this paper proposes to use the trip chain theory to describe and
analyze it. The trip chain is a detailed description of the entire process
of traveling, for example, a user leaves home at 7:30 in the morning,
arrives at work by driving EV, leaves the company at 12:00 to go
to a restaurant for a meal, then goes to the supermarket on the way
home, and arrives back at home at 13:00, which is a complete chain
of trips. This process contains spatial–temporal information, trans-
portation modes and other travel characteristics, a comprehensive and
coherent description of the user’s travel process in this period. As shown
in Fig. 3, it is a spatio-temporal expression of this user’s travel behavior
during this time. So, for the EV travel process, the process of departure,
3

Fig. 3. Three-dimensional space–time representation of travel behavior.

driving, arrival, stopping, and leaving is completed during the private
EV travel process [23], and the repetition of this process forms the EV
trip chain.

In order to make this method more feasible, this paper establishes
a probabilistic model for each feature quantity in the trip chain by
statistical characterization at the group level with large samples [24].
The referenced data is from the National Household Travel Survey
(NHTS) household travel statistics from 2009 and 2017 [25].

Regarding the division of travel destinations, according to existing
studies, this paper classifies them into five types, as shown in Table 1.
By studying the data of users’ round-trip journeys in one day, it was
found that the average value of the trip chain length of private EVs
was 3.02 [26], When it is greater than this value, it can be determined
that there is a short stop on the way and that the probability of charging
behavior occurring during this process is extremely low. So, this paper
divides the trip chain on the basis of the trip chain length of 3, as shown



Electric Power Systems Research 244 (2025) 111532M. Tang et al.

t

d
f
f

a
s

t

d

o

u

t

r

s

r

l

t

Table 1
Destination classification.

Destination Residential areas Workspace Recreation area Shopping areas Other

Symbol H W SR SE O

Table 2
Segmentation of the trip chain.

Number Trip chain

1 H-W/SR/SE/O-H
2 H-W-SR/SE/O-H
3 H-SR-W/SE/O-H
4 H-SE-W/SR/O-H
5 H-O-W/SR/SE-H

in Table 2, and it is also set that charging behavior will not occur in
he above cases.

The study shows that the time of the first daily trip 𝑇 for EVs follows
a normal distribution. obey a normal distribution, 𝜇𝑇 = 6.92, 𝜎𝑇 = 1.24,
The probability density function is:

𝑓𝑇 0 (𝑇 ) =
1

√

2𝜋 𝜎2𝑇
exp

[

−

(

𝑇 − 𝜇𝑇
)2

2𝜎2𝑇

]

, 0 < 𝑇 ≤ 24 (1)

EVs do not stay for the same amount of time in different travel
destinations, so the dwell time of EVs in each of the several regions
elineated in this paper herein obeys the following probability density
unction. The residence time density function in the H-region is as
ollows:

𝑓
(

𝑡𝑝𝑖
)

= 𝛼
𝑐

(

𝑡𝑝𝑖
𝑐

)𝛼−1

𝑒−
(

𝑡𝑝𝑖 ∕𝑐
)𝛼

(2)

where, 𝛼 represents the shape parameter, and 𝑐 represents the scale
parameter.

The stay time in area W and other areas follows this probability
density function, as show in Eq. (3):
⎧

⎪

⎨

⎪

⎩

𝑓𝑡_𝑝 (𝑝) =
1
𝑎 𝑒

−(1+𝑏𝑝)𝑑 (1 + 𝑏𝑝)𝑑−1

𝑝 =
𝑡𝑝𝑖 −𝛾
𝑎

(3)

where, 𝑡𝑝𝑖 is the length of time the EV stays at destination 𝑖, and the
values of the parameters 𝑎, 𝑏, 𝑑, 𝛾 are obtained through experimental
fitting.

The above is a probabilistic model of the time-characterized vari-
bles in the study of the EV trip chain. In addition to this there are
pace-characterized variables that need to be analyzed.

The single trip distance, 𝑑𝑖 is denoted as the distance traveled by
he EV from the destination 𝑖− 1 to the destination 𝑖, and its probability

density function is as follows:

𝑓𝑑 (𝑑) =
1

𝑑 𝜎𝑑
√

2𝜋
exp

[

−

(

ln 𝑑 − 𝜇𝑑
)2

2𝜎2𝑑

]

(4)

where, 𝜇𝑑 = 2.29, 𝜎𝑑 = 0.9.
The space transfer probability, denote 𝐷𝑖 as the type of the travel

estination 𝑖, 𝑝𝑖𝑗 as the probability that an EV transfers from destination
𝑖 to destination 𝑗, 𝑖 ∈ [𝐻 𝑊 𝑆 𝑅𝑆 𝐸 𝑂], 𝑗 ∈ [𝐻 𝑊 𝑆 𝑅𝑆 𝐸 𝑂], then the
probability matrix for the space transfer probability of the EV is:

𝑝𝑖𝑗 =
⎡

⎢

⎢

⎣

𝑝11 ⋯ 𝑝15
⋮ ⋱ ⋮
𝑝51 ⋯ 𝑝55

⎤

⎥

⎥

⎦

,

{

0 ≤ 𝑝𝑖𝑗 ≤ 1
∑5

𝑖=1 𝑝𝑖𝑗 = 1
(5)

2.2. Charging behavior analysis

Whenever a user arrives at a destination, whether the user chooses
to charge is affected by various factors, and this paper analyzes the
4

user’s charging behavior mainly based on the state of charge (SOC)
f the EV in the simulation process. EV charging termination states

follow an exponential distribution [27], Let 𝑆𝑖 be the SOC at arrival
at destination 𝑖. Then 𝑆0 can be described by the distribution of
charge termination state of charge, its probability density function is
as follows:

𝑓𝑆 (𝑆) =
{

𝜆𝑠𝑆𝜆𝑠−1 , 0 < 𝑆 ≤ 1
0 , ot her wise (6)

where, the parameter 𝜆𝑠 = 4.352.
EV users suffer from mileage anxiety in most of them [28], so they

tend to choose to recharge when the power level is below a certain
value, but there are individual differences in this power level. In order
to facilitate the study of this paper, the concept of the lowest SOC
preference, i.e. the lowest SOC of the battery that is acceptable to the
ser, its probability density function is as follows:

𝑓𝑠_𝑀 (𝑠) = 1
√

2𝜋 𝜎𝑠
exp

[

−

(

𝑠 − 𝜇𝑠
)2

2𝜎2𝑠

]

(7)

where, 𝜇𝑠 = 0.47, and 𝜎𝑠 = 0.18.
In the study of this paper, the EV arrives at the destination 𝑖 with

wo situations of SOC 𝑆𝑖, as shown in Eq. (10), one is charged at the
destination 𝑖 − 1 and the other is uncharged as follows:

𝑆𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑆𝑖−1 −
𝜆⋅𝑑𝑖
𝑃𝑐

, unchar ged

𝑆𝑖−1 +
𝑝𝑓 ⋅𝑡𝑐𝑖−1

𝑃𝑐
− 𝜆⋅𝑑𝑖

𝑃𝑐
, char ged

(8)

where, 𝑝𝑓 is the power of the fast charger and 𝑡𝑐𝑖−1 is the charging
duration at the destination 𝑖 − 1.

There are also two states to be considered with respect to the
charging duration, if the charging is not completed at the destination
𝑖, the charging time can be expressed in terms of the dwell time 𝑡𝑝𝑖 at
the location 𝑖, and if it is fully charged, as shown in Eq. (9):

𝑡𝑐𝑖 =
{

𝑡𝑝𝑖 , not f ull
(

𝑃𝑐 − 𝐸 𝐿𝑖
)

∕𝑝𝑓 , f ull (9)

where, 𝑃𝑐 is the capacity of the battery, and 𝐸 𝐿𝑖 is the remaining power
of the EV when it reaches destination 𝑖.
2.3. Charging load prediction

Based on the above analysis of user travel behavior and charging
behavior, meanwhile, in order to make the charging demand prediction
esults more in line with the actual situation, so this paper uses MC to

simulate the charging process of its traveling with the following steps,
and the simulation flow is shown in Fig. 4.

Step 1: Input planar coordinate data, time-characterized variables,
pace-characterized variables, and probability density function of

charging behavioral features.
Step 2: Determine the total number of vehicles 𝑁 , initialize 𝑛 = 1.
Step 3: Initialize EV vehicle status, select the starting departure

location, initial SOC, minimum SOC preferences and the time of the
first trip, 𝑖 = 1.

Step 4: Select the type of trip chain of the vehicle 𝑛 randomly.
Step 5: Select the travel destination and length of stay for travel 𝑖

andomly.
Step 6: Calculate the power consumption during trip 𝑖, and then

determine whether to charge or not at this moment based on the SOC
when arriving at destination 𝑖 and the vehicle’s lowest charge state
preference. If charging is selected, calculate the charging time at the
ocation 𝑖, output the charging data, and then execute step 7. If charging

is not selected, step 7 is executed directly.
Step 7: Determine whether the destination 𝑖 is the end point, if it

is, execute step 8, if not, after reaching the destination 𝑖, calculate the
ravel time and arrival time according to the travel distance and travel

speed, then update the SOC when arriving at the destination 𝑖 according
to Eq. (8). 𝑖 = 𝑖 + 1, perform step 5 again.
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Fig. 4. MC simulation of charging demand flowchart.
Step 8: Determine whether 𝑛 = 𝑁 is valid, if it is valid, it means
that the simulation of charging demand for all private EVs has been
completed, end the whole simulation process, if not, then return to step
3.
3. Multi-objective location model for EV charging stations

This section primarily establishes the objective function for the loca-
tion planning of EV charging stations, considering relevant constraints
to ensure that the charging stations can provide normal charging ser-
vices. Finally, a multi-objective location model is established to achieve
optimal location and sizing of EV charging stations.

3.1. Objective function

We exclude private charging stations from our consideration, focus-
ing primarily on urban public fast charging stations as the subject of our
research. For the planning and construction of fast charging stations,
it mainly involves two key stakeholders: the investors and the users.
When selecting the location, both the economic costs of the investors
and the service experience of EV users need to be considered. Regarding
the economic costs for investors, the main considerations include land
costs, infrastructure construction costs, and operational costs, with the
objective function being established to minimize the total investment
cost. As for the service experience of EV users, it is characterized by the
time spent searching for a station and the waiting time of users, with
the goal of minimizing the total search distance and reducing waiting
time. We construct a multi-objective location planning model for fast
5

charging stations by considering both aspects. In order to make the
final station construction planning can achieve the goal of minimizing
the investors’ total cost and maximizing user satisfaction, this paper
through search for information to find out the specific composition of
the investment cost of charging station [29], to construct the total in-
vestment cost objective function; A user satisfaction objective function
was constructed based on the travel data and charging data obtained
from the charging demand forecasting work.

At present, urban land resources are scarce, and most of the charg-
ing stations are constructed by renting parking spaces, so the land cost
mainly depends on the rent of parking spaces [30]. Therefore, assuming
the cost of land 𝑗 for charging stations is 𝑐1𝑗 , 𝑞𝑗 is the number of charging
piles at charging station 𝑗, and 𝑐𝑟 is the rent for a single parking space,
the cost of land can be expressed as follows:

𝑐1𝑗 = 𝑞𝑗𝑐𝑟 (10)

Let the infrastructure cost be 𝑐2𝑗 , which includes three compo-
nents [31]: distribution system cost 𝐴, charging system cost 𝐵, and
monitoring system cost 𝐶, as shown in Eq. (11)

𝑐2𝑗 = 𝐴 + 𝐵 𝑞𝑗 + 𝐶 (11)

Define the operational cost of the charging station as 𝑐3𝑗 , which
primarily encompasses the daily maintenance costs associated with its
operations. This paper establishes the operational cost of the charging
station based on its infrastructure cost as follows:
3 2
𝑐𝑗 = 𝜂 𝑐𝑗 (12)
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where 𝜂 is the conversion factor between operating costs and infras-
ructure costs.

In summary, considering the large upfront investment cost of con-
structing charging stations and the changing value of cash flows over
ime, a discount rate is introduced to measure the value of cash flows
n different periods. The discount rate is set to be 𝑟0, the operating

life is set to be 𝑘, and based on the discounted cash flow values, the
investment cost minimization function is formulated as follows:

min𝐶 =
∑

𝑗∈𝐽

(

𝑐1𝑗𝑋𝑗 + 𝑐2𝑗𝑋𝑗 + 𝑐3𝑗𝑋𝑗

)

[

𝑟0
(

1 + 𝑟0
)𝑘

(

1 + 𝑟0
)𝑘 − 1

]

(13)

where 𝑋𝑗 is the decision variable as shown in Eq. (16):

𝑋𝑗 =
{

1 , build st at ion at j
0 , no st at ion at j (14)

In order to improve the user charging experience, this paper con-
structs a user satisfaction maximization objective function based on
tation-seeking time and user waiting time in queue.

If an EV is charged at point 𝑗 from 𝑖, the station-seeking time can
e expressed as follows:

𝑡𝑖𝑗 =

√

(

𝑋𝑖 −𝑋𝑗
)2 +

(

𝑌𝑖 − 𝑌𝑗
)2

𝑣
(15)

The number of EVs going to charge station 𝑗 at demand point 𝑖 be
𝑖, then the total station-seeking time for EVs going to charge station
is as follows:

𝑇𝑖𝑗 =
∑

𝑖∈𝐼
𝑡𝑖𝑗𝑚𝑖 (16)

In the actual charging, not every vehicle will be charged to 100%,
and it is found that when the power is lower than 20%, most of the
users will choose to charge, and when the power reaches 80% the users
will have a high probability to terminate the charging, the range of the
charging amount is represented by 𝛽, so the queuing time of a single
charging station 𝑇𝑚 is as follows:
⎧

⎪

⎨

⎪

⎩

𝑇𝑝 = 𝛽 𝑡
𝑇𝑚 = 𝑇𝑝

⌈

𝑚𝑖
𝑞𝑗

⌉

(17)

Then the user waiting time for all charging stations is as follows:

𝑇𝑤 =
∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑇𝑚𝑌𝑖𝑗 (18)

where 𝑌𝑖𝑗 is the decision variable as shown in Eq. (19):

𝑌𝑖𝑗 =
{

1 , user s choose point j f or char ging
0 , user s do not choose point j f or char ging (19)

In summary, considering that the minimum function of the opera-
tor’s input cost is in terms of years, the following function is established
with the objective of maximum user satisfaction:

min 𝑇 =

(

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑇𝑚𝑌𝑖𝑗 + 𝑇𝑖𝑗

)

× 365 (20)

In order to visualize the planning results, the average user station-
eeking time and average user queuing time will be used in the simu-
ation results to indicate the user satisfaction.

3.2. Restrictive condition

The service capacity of charging stations is limited, and if numerous
Vs are connected to the grid at the same time, it will bring a shock to

the grid operation, which will lead to the inability of the grid to operate
normally [32]. Therefore, this paper puts the following constraints on
he construction planning of charging stations to ensure that there will
6

be no negative impact on the grid operation after the charging stations
are built.
(1) Number of charging piles

For the construction of centralized charging stations, there is gener-
ally a minimum number of piles in terms of the deployment of charging
piles [33], and unlimited pile construction is not possible due to the
limited number of parking spaces at alternative sites, so 𝑞𝑚𝑖𝑛 = 3,
𝑞𝑚𝑎𝑥 = 15.

(2) Charging station service capacity

There are a limited number of charging piles within a single charg-
ng station, so it is not possible to serve an unlimited number of users

with a limited service capacity as shown in Eq. (21):
∑

𝑖
𝑚𝑖𝑌𝑖𝑗 ≤ 𝑇 𝑞𝑗∕𝑡,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (21)

(3) Charging demand and charging station construction constraints

Charging facilities will not be deployed at sites that are not se-
lected as alternative sites for charging station construction, which is
constrained in this paper as follows:

𝑌𝑖𝑗 ≤ 𝑋𝑗 ,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (22)

(4) Station-seeking distance constraints

When a user generates a demand for charging at a certain destina-
tion, the distance the user can travel in this SOC is limited, so station-
eeking distance should not exceed the maximum station-seeking dis-
ance of EV as follows:

𝑑𝑖𝑗 ≤ 𝑑max,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (23)

To facilitate solving the model in this paper, default that all users
who generate charging demand at the demand point will go to the same
charging station for charging. This means that all users at the same
point of demand will choose to go to the optimal charging station based
on their location.

3.3. Model solving

The model includes the investment cost minimization objective
function Eq. (13), the user satisfaction maximization objective function
Eq. (20), the constraints Eqs. (21)–(23), and the limitation on the num-
ber of charging piles within the station. It aims to minimize costs for
investors while ensuring maximum user satisfaction. While seeking a
balance between the two, the model also considers the service capacity
of the charging station and the mileage anxiety of EV users. Therefore,
solving this model constitutes a mixed-integer nonlinear programming
problem. To obtain the optimal layout plan for the charging station,
precise and efficient solutions are required. The exact algorithm consid-
eration is too single, and the traditional algorithms such as PSO have
the problem of low convergence accuracy in solving this model [34].
So the WOA was chosen to solve the model, which finds the optimal
olution by imitating the search process of whales catching food in the
cean. And this algorithm has the characteristics of simple structure
nd few parameters of itself, which is faster and more accurate than
he traditional PSO algorithm and genetic algorithm in multivariate
unction solving [35].

Thus, in this part of the model solution, the traditional WOA was
first used to solve the single-objective model for the siting model
constructed in this paper to derive the planning scheme for the charging
station under the consideration of the single-objective. However, for
function problems with multiple optimization objectives, among multi-
ple objective function values which corresponding to whale individual
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Fig. 5. Model solving flowchart.
has conflict, the inability to deal with the relationship among each ob-
jective function values leads to the WOA being unable to deal with this
type of problem [36]. In order to deal with the multi-objective model,
a process of sorting populations according to on-dominated sorting
was added to the traditional WOA. Through crowding calculation and
elite retention strategy, screen out the best non-dominated individuals
to guide the population and evolve the population, This gives the
algorithm the ability to be able to solve multi-objective optimization
problems [37]. As shown in Fig. 5, it is a flowchart for solving the
multi-objective model of this paper with the following steps:

Step 1: Input parameters such as objective function, constraints,
initialize whale population size, maximum number of iterations.

Step 2: Generation of a first-generation whale population, followed
by merging of the current generation with the newly generated gener-
ation.

Step 3: Calculate the non-dominated rank of all individual whales
in the combined group and rank them from smallest to largest.

Step 4: In the order of step 3, calculating the crowding size of the
individuals with the same non-domination rank, and sorting the indi-
viduals with the same rank from the largest to the smallest crowding
size.

Step 5: Based on the sorting results of steps 3 and 4, screen the maxi-
mum value as excellent individual, and record the location information
of the optimal whale individual.

Step 6: Determine whether the maximum number of iterations is
reached, if yes, output the optimal siting scheme, otherwise return to
step 2.
4. Case validation

This section takes a specific area of Nanjing as an example to
simulate and predict the EV charging load using its road network
7

system. Based on the obtained data and relevant constraints, a charging
station location model is constructed. The WOA and the NSWOA algo-
rithm are used to solve the single-objective and multi-objective models,
respectively. Additionally, PSO and MOPSO are employed to solve the
results, and a comparison is made between them. The feasibility of this
method is verified by the result analysis, which can provide certain
ideas for the study of EV charging station siting layout research. The
platform used for simulation is ArcGIS and MATLAB R2023b.

4.1. Data acquisition

The simulated road network was obtained from OSM (Open Street
Map) open-source mapping website to obtain the road vector data
in the study area and imported into ArcGIS for analysis. Firstly, the
vector data obtained from OSM are processed and analyzed, and then
according to the data attribute table, the irrelevant sections such as
sidewalks and parkways are eliminated, the main arterial roads where
EVs pass through are retained, and the two-way lanes are merged,
and the processing process of road network node diagram is shown
in Fig. 6, and the final road network of the simulation area obtained
is shown in Fig. 7. The area has a total area of approximately 77.39
k m2, with an east–west span of 10.9 km and a north–south span of 7.1
km. Considering the road network nodes as demand points, there are
a total of 47 demand points, and these demand points are classified
into five types of zones based on their actual locations, as shown in
Table 3. In order to facilitate the model processing in this paper, the
road node maps obtained after ArcGIS processing are mapped to the
plane rectangular coordinate system for processing, and the relevant
parameters are set according to the real data.
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Table 3
Nodal area division.

Area Nodes

H 1, 2, 13, 21, 26, 29, 33, 35, 44
W 3, 8, 14, 16, 24, 32, 34, 39, 40, 46
SR 5, 6, 11, 17, 20, 22, 31, 42, 45, 47
SE 4, 9, 12, 15, 19, 23, 27, 37, 41
O 7, 10, 18, 25, 28, 30, 36, 38, 43

Table 4
Parameter values for Eq. (3).

Parameters 𝑎 𝑏 𝑑 𝛾

W 164.51 −0.23 4.35 438.45
Other 41.76 0.66 −1.52 68.52

Fig. 6. ArcGIS road network process.

Fig. 7. Nodal map of the road network in the simulation area.

When conducting travel chain analysis, the parameters of the proba-
bility density function for stay time in W district and other districts are
derived from analyzing and fitting the survey data from the National
Household Travel Survey (NHTS) for 2009 and 2017, as shown in
Table 4.

The number of EV in the region is set to be 5000, assume that each
road has the same vehicular traffic, and the charging power of the
charging station is kept constant. In this paper, without considering
the effect of traffic congestion on the road on the speed and power
consumption of the vehicle, the vehicle consumes the same amount
of power per kilometer and travels at a constant speed on the road.
Summarized through numerous literature review, combined with pre-
vious research related to charging stations and the actual situation in
8

Table 5
Other parameter values.

Parameters Explanation Set values

𝑝𝑓 Fast charger power 60 kW
𝑣 Average travel speed 30 km/h
𝑟0 Discount rate 0.08
𝑘 Operating years 20 years
𝜂 Conversion factor for operating expenses 0.1
𝑃𝑐 Battery capacity 42 kW h
𝐷 Maximum mileage 300 km
𝛼 Shape parameter 1.15
𝑐 Scale parameter 195.79
𝐴 Distribution system cost 1.9 million CNY
𝐵 Charging system cost 0.35 million CNY
𝐶 Monitoring system cost 0.2 million CNY
𝛽 Charging range parameter 60%

Fig. 8. Charging demand at public charging stations in 24 h.

Nanjing [38], this paper sets the values of other parameters as shown
in Table 5.

4.2. EV charging load prediction

According to the nodes of the road network, the following results
are obtained by the simulation of user travel behavior based on the trip
chain as well as the charging demand simulation prediction, as shown
in Fig. 8, which is the one-day charging demand of the charging station
in the region. This paper studies public charging posts, so it does not
consider the fact that users will charge at private charging posts during
their night off. Therefore, from Fig. 8 it can be seen that charging
demand gradually decreases from the early hours of the morning, and
the bottom of the day’s peak charging demand occurs during this time,
followed by the morning peak from 7:00–9:00 a.m., where the first peak
charging period of the day occurs after the morning peak. Similarly,
during 18:00–20:00 is the evening peak, the charging demand is also
reduced, and when the charging demand increases again at the end of
this period, this simulation prediction is more in line with the users’
behavior that most of them are accustomed to choosing fast chargers
for charging at the end of the travel peak period [39]. It also shows
that this method can achieve more realistic results for user charging
demand simulation.

To make the charging demand load distribution in the region more
intuitive, this paper combines the charging data obtained from MC sim-
ulation to visualize the charging demand load distribution. As shown
in Fig. 9, the simulation prediction results of the charging demand
load distribution over time at the 47 road nodes show the variation
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Fig. 9. Nodal charging load demand.

Fig. 10. Space distribution of charging loads.

of the charging load at each road node over a 24-h period. As shown in
Fig. 10, the overall spatial distribution of loads obtained by accumulat-
ing the 24-h charging loads at each node in the region. It can be seen
that the charging demand is higher in areas with dense road network,
and on the contrary the charging demand is lower in areas with sparse
road network, but this does not mean that the charging station siting in
this paper results in the nodes with the highest charging load demand.
Building a station in this way will only lead to a larger traffic flow in
the area, which in turn will cause traffic congestion, so when solving
the siting model, this method considers a variety of factors.

4.3. Single-objective planning

Based on the relevant data obtained from the above charging de-
mand simulation predictions, and considering the related constraints
mentioned earlier, we constructed two single-objective siting planning
models: Model 1 aims to minimize investment costs, while Model
2 focuses on maximizing user satisfaction. The WOA and PSO were
employed to solve the charging station siting layout for each model.
As shown in Table 6, it is the result of site selection considering
investor’s cost and user’s convenience respectively, Tables 7 and 8 show
the number of charging piles installed in each charging station after
planning.

Comparing the planning results obtained from three different so-
lution methods, the WOA produces the most favorable outcomes for
investors or users in both site selection models. From the planning
results, it can be observed that in areas with higher charging demand,
the number of charging piles installed at each station are greater.
9

Fig. 11. Convergence curve (Model 1).

Additionally, the station density in these areas tends to be relatively
higher.

Comparing the two planning results, when standing from the per-
spective of the investor and considering only the minimization of the
investment cost, the number of stations built is much smaller than the
number of stations built when considering only the satisfaction of the
users, which keeps the cost at a lower level. However, this station
building program makes the search time and the waiting time of users
in the queue are relatively long, which brings great inconvenience
to the users’ charging. When standing from the perspective of the
user, only considering the maximization of user satisfaction, it can
be seen that the number of stations built has been improved, and
the user’s time spent searching for stations and waiting in line has
been greatly reduced. However, the investment cost of the investor
amounted to 41.578 million CNY, which put great pressure on the
investor. Meanwhile, the excessive size of charging stations also means
that the number of EVs that can be connected to the distribution grid
at the same time will rise, which will also bring challenges to the
stable operation of the distribution grid. Such result is not reasonable
for investors and users, and it is difficult to strike a balance between
the two, which can only have a negative effect on the development
and popularization of EVs. If users no longer choose EVs for travel,
society’s dependence on fossil fuels will increase, which is clearly not
a reasonable planning result.

In addition, comparing the results obtained by WOA and PSO,
Model 1 is planned from the investor’s perspective, and the results
show that WOA saves 3.51% in costs compared to PSO. Model 2
is planned from the user’s perspective, and the results indicate that
WOA improves user satisfaction by 5.73% compared to PSO. From the
iterative convergence curves in Figs. 11 and 12, it can be seen that PSO
is more prone to falling into local optima in the early stages compared
to WOA and has a slower optimization speed. To further validate the
performance of the method proposed in this paper, Binary Particle
Swarm Optimization (BPSO) was also used to solve the two models
mentioned above. The results are shown in Table 6. Compared to the
planning results of traditional PSO, BPSO demonstrates a significant
optimization effect for both models. However, when compared to the
results obtained by WOA, WOA saves 0.91% of the cost in Model
1 and increases user satisfaction by 1.2% in Model 2. As shown in
the iteration convergence curves in Figs. 11 and 12, BPSO shows a
noticeable improvement in optimization performance over PSO, yet still
slightly lags behind WOA in the site selection process. In conclusion,
WOA outperforms both PSO and BPSO in solving the electric vehicle
charging station location problem.
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Table 6
Single-objective planning results.

Parameters Model 1 Model 1 Model 1 Model 2 Model 2 Model 2
(WOA) (PSO) (BPSO) (WOA) (PSO) (BPSO)

Number of charging stations 8 9 9 14 13 13
Investment cost (million CNY/year) 30.746 31.865 31.029 41.578 40.291 41.037
Average Station-seeking time (minutes) 54.9 52.6 53.8 23.1 25.1 23.9
Average queuing time (minutes) 63.7 61.5 63.1 19.6 20.1 19.3
Table 7
Model 1 Planning the number of charging piles.

Node (WOA) Number of charging Node (PSO) Number of charging Node (BPSO) Number of charging
Piles (WOA) Piles (PSO) Piles (BPSO)

7 6 1 3 6 5
10 4 4 5 10 7
18 7 10 2 14 7
22 5 16 7 15 2
28 7 19 4 25 4
32 3 28 8 30 5
38 5 31 3 35 8
42 4 44 7 39 3
/ / 46 6 43 2
Table 8
Model 2 Planning the number of charging piles.

Node (WOA) Number of charging Node (PSO) Number of charging Node (BPSO) Number of charging
Piles (WOA) Piles (PSO) Piles (BPSO)

7 5 2 3 6 5
9 4 6 5 12 2
10 4 8 3 14 6
13 5 11 2 19 3
16 6 13 6 23 4
19 3 16 3 25 3
21 4 19 4 26 5
24 3 27 2 28 5
26 4 31 3 29 3
27 3 35 6 38 6
30 4 37 4 40 4
32 5 40 5 42 3
38 3 45 4 45 5
42 4 / / / /
Fig. 12. Convergence curve (Model 2).

4.4. Multi-objective planning

As shown in Table 9, it is the result of using NSWOA to consider the
two objective functions at the same time, i.e., the planning scenarios
derived from both the investor’s and the user’s perspectives. From the
data in the Table 9, it can be seen that the program obtained when con-
sidering multiple objectives for site selection reduces the investor’s cost
10
from 41.578 million CNY to 37.742 million CNY, which is a reduction
of 9.22%, compared with the program obtained by considering only
the objective function 2. In addition, compared to when only objective
function 1 is considered, the multi-objective siting scheme results in
a significant reduction in both user average station-seeking time and
average charging queuing time from 54.9 and 63.7 to 28.6 and 21.7,
which is a reduction of 47.91% and 65.83% respectively. Under this
planning scenario, the number of charging piles to be installed at each
site is shown in Table 10, and the location of each charging station
to be built is shown in Fig. 13, where the special color markers are
the alternative nodes to be built in the area. The multi-objective site
selection method integrates the needs of the investor and the user,
reduces the investment cost while at the same time improves the user’s
satisfaction, so that the EV user’s ‘‘mileage anxiety’’ is alleviated in
the process of searching for charging stations. At the same time, the
reduction of the user’s station-seeking time also means that the search
distance becomes shorter, which also makes the waste of energy in the
search process has also been reduced, with the current increase in the
number of EVs, in the huge EV base, will save a lot of energy.

From Table 9, it can also be seen that in the final planning results
obtained from solving the multi-objective model, NSWOA saves 2.54%
of the investment cost compared to MOPSO. The station search time
and the charging queue time for users are also better in the NSWOA
results than those of MOPSO. NSWOA improves user satisfaction by
2.52% compared to MOPSO. Moreover, from the Pareto front obtained
in the experiment, as shown in Fig. 14, NSWOA demonstrates better
optimization performance in the location model solution, with higher
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Table 9
Multi-objective planning results.

Parameters Planning results (NSWOA) Planning results (MOPSO)

Parameters 11 12
Investment cost (million CNY/year) 37.742 38.725
Average Station-seeking time (minutes) 28.6 29.2
Average queuing time (minutes) 21.7 22.4
Table 10
Multi-objective planning of the number of charging piles.

Node (NSWOA) Number of charging
piles (NSWOA)

Node (MOPSO) Number of charging
piles (MOPSO)

3 4 2 3
5 3 7 5
9 6 9 4
11 4 12 2
18 5 14 6
21 3 15 5
23 7 25 3
32 5 28 7
42 4 30 4
44 3 33 2
47 3 38 4
/ / 39 5
Fig. 13. Results of multi-objective site selection.

optimization accuracy than MOPSO, as its solution set consistently oc-
cupies a more advantageous position in Fig. 14. In addition, comparing
the results of the multi-objective model solved by MOPSO with those
of the single-objective model solved by PSO, it can be concluded that
in multi-objective planning, the investment cost is reduced by 3.89%
compared to single-objective planning, which only considers user sat-
isfaction. The user station search time and charging queue time were
significantly reduced, from 52.6 and 61.5 to 29.2 and 22.4, a reduction
of 44.49% and 63.57%, respectively. This also shows that the results
of the multi-objective planning model, whether solved by NSWOA
or MOPSO, are more reasonable than those of the single-objective
planning model.

In summary, the simulation and prediction results of electric vehicle
travel and user charging behavior, based on the travel chain theory
and Monte Carlo method, closely resemble actual situation. Using the
simulated travel data obtained from electric vehicle travel and the
charging data derived from user charging behavior as a foundation,
and considering other relevant constraints, a complex site selection
model was constructed. The WOA and NSWOA were employed to
solve the site selection problem. Solutions for both single-objective and
multi-objective site selection were obtained, and by comparison, it was
concluded that the multi-objective scheme better accommodates the
11
Fig. 14. Pareto Front Diagram.

needs of both investors and users. Additionally, comparative experi-
ments between WOA and PSO, as well as NSWOA and MOPSO, were
conducted, ultimately verifying the feasibility of the proposed method.
This has a positive impact on the future promotion of electric vehicles,
and in the long term, it can help reduce society’s reliance on fossil
fuels, contribute to lower carbon emissions, and support the goal of
‘‘carbon-neutral’’.

5. Conclusion

Due to the unpredictable charging needs of EV users and the imbal-
ance between investor costs and user satisfaction in the development of
EVs, it has become one of the impediments to the popularization of EV
development. So, this paper establishes an EV charging load demand
forecasting model based on the trip chain theory and MC method, and
constructs EV charging station siting model to solve the regional siting
problem with the data obtained in this process, and the conclusions of
this paper are as follows:

(1) Based on the concept of EV trip chain, the travel of EVs is
described by analyzing the key characteristic quantities such
as trip chain length, daily first travel moment, single travel
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distance, travel destination type, length of stay, spatial transfer
probability, etc., use the MC to simulate the EV’s dynamic travel
process and the user’s charging behavior, the results obtained
are more in line with the actual situation.

(2) Analysis of the solution results of the single-objective siting
model and the multi-objective siting model constructed in this
paper concludes that the multi-objective siting model reduces
the cost of the investor and also improves the charging expe-
rience of the user, indicating that the siting model is able to
balance the interests of the service provider and the consumer,
thus promotes the popularization and development of the EV.

(3) Aiming at the traditional WOA cannot solve the multi-objective
problem, a process of sorting populations according to on-
dominated sorting is introduced to it, so that it can solve the
multi-objective siting model constructed in this paper, and the
feasibility of the research method in this paper is further verified
through the final results.

With the continuous development of EV technology, this paper
makes the following outlook for future research: (1) the number of EVs
is still increasing, and further research is needed for the planning of
supporting charging facilities; (2) the impact brought by numerous EVs
connecting to the distribution network can be reduced by the charging
behavior of the orderly scheduling guidance.

CRediT authorship contribution statement

Minan Tang: Writing – review & editing, Funding acquisition,
ata curation. Yude Jiang: Writing – original draft, Software. Shuyou
u: Software, Conceptualization. Jiandong Qiu: Investigation, Data
uration. Hanting Li: Methodology, Formal analysis. Wenxin Sheng:
isualization, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

This work was financially supported by the National Natural Science
oundation of China [grant numbers 62363022, 61663021, 71763025,
nd 61861025]; Natural Science Foundation of Gansu Province, China

[grant number 23JRRA886]; Gansu Provincial Department of Educa-
tion: Industrial Support Plan Project [grant number 2023CYZC-35];
Gansu Provincial Department of Education: Excellent Graduate ‘‘Inno-
vation Star’’ Project [grant number 2025CXZX-662].

Data availability

The authors do not have permission to share data.

References

[1] J. Cao, Y. Han, N. Pan, J. Zhang, J. Yang, A data-driven approach to urban
charging facility expansion based on bi-level optimization: A case study in a
Chinese city, J. Energy 300 (2024) 131529, http://dx.doi.org/10.1016/j.energy.
2024.131529.

[2] X. Meng, Y. Zhang, Q. An, Y. Xu, Q. Li, Influence of electric vehicle access
charging on voltage fluctuation of distribution network, J. Power Syst. Clean
Energy 37 (2) (2021).

[3] H. Li, D. Son, B. Jeong, Electric vehicle charging scheduling with mobile charging
stations, J. J. Clean. Prod. 434 (2024) 140162, http://dx.doi.org/10.1016/j.
jclepro.2023.140162.

[4] Guiding opinions on further building a high-quality charging infrastructure
system, J. Gaz. State Counc. Peoples Repub. China 19 (2023) 7–11.
12
[5] G. Yan, H. Liu, N. Han, S. Chen, D. Yu, An optimization method for location
and capacity determination of charging stations considering spatial and temporal
distribution of electric vehicles, J. Proc. CSEE 41 (18) (2021) http://dx.doi.org/
10.13334/j.0258-8013.pcsee.202001.

[6] P. Sadeghi-Barzani, A. Rajabi-Ghahnavieh, H. Kazemi-Karegar, Optimal fast
charging station placing and sizing, J. Appl. Energy 125 (2014) 289–299, http:
//dx.doi.org/10.1016/j.apenergy.2014.03.077.

[7] B. Xiong, Z. Shu, C. Guo, S. Wang, S. Li, Charging station optimization planning
from the perspective of social benefits, J. Syst. Plan. 47 (12) (2019).

[8] D. Wang, J. Liu, Z. Cao, Y. Niu, H. Tang, J. Liu, Planning for charging stations
of electric vehicles considering drivers’trip chains, J. Proc. CSU- EPSA 30 (6)
(2018).

[9] H. Wang, G. Wang, J. Zhao, F. Wen, J. Li, Optimal planning for electric vehicle
charging stations considering traffic network flows, J. Autom. Electr. Power Syst.
37 (13) (2013) 63–69+98, http://dx.doi.org/10.7500/AEPS201211031.

[10] J. Cao, C. Wang, C. Huo, Y. Luo, D. Tao, X. Wu, Optimal planning of electric
vehicle charging stations considering the load fluctuation and voltage offset of
distribution network, J. J. Electr. Power Sci. Technol. 36 (4) (2021) 12–19,
http://dx.doi.org/10.19781/j.issn.1673-9140.2021.04.002.

[11] N. Zhou, X. Xiong, Q. Wang, Simulation of charging load probability for
connection of different electric vehicles to distribution network, J. J. Electr.
Power Sci. Technol. 34 (2) (2014) 1–7, http://dx.doi.org/10.3969/j.issn.1006-
6047.2014.02.001.

[12] H. Hu, J. Ge, Y. Wei, Optimization strategy for electric vehicle charging based
on improved multi-objective particle swarm algorithm, J. J. Electr. Eng. (2024)
1–10, https://link.cnki.net/urlid/10.1289.TM.20240228.0843.002.

[13] L. Zhang, Z. Huang, Z. Wang, X. Li, F. Sun, An urban charging load forecasting
model based on trip chain model for private passenger electric vehicles: A case
study in Beijing, J. Energy 299 (2024) 130844, http://dx.doi.org/10.1016/j.
energy.2024.130844.

[14] Y. Shao, Y. Mu, X. Yu, X. Dong, H. Jia, J. Wu, Y. Zeng, A spatial–temporal
charging load forecast and impact analysis method for distribution network
using EVs-traffic-distribution model, J. Proc. CSEE 37 (18) (2017) 5207–5219,
http://dx.doi.org/10.13334/j.0258-8013.pcsee.161470.

[15] L. Chen, F. Yang, Q. Xing, S. Wu, R. Wang, J. Chen, Spatial-temporal distribution
prediction of charging load for electric vehicles based on dynamic traffic
information, in: 2020 IEEE 4th Conference on Energy Internet and Energy System
Integration (EI2), Wuhan. China, 2020, pp. 1269–1274, http://dx.doi.org/10.
1109/EI250167.2020.9347194.

[16] D. Wang, Y. Ge, J. Cao, Q. Lin, R. Chen, Charging load forecasting of electric
vehicles based on sparrow search algorithm-improved random forest regression
model, J. J. Eng. 2023 (6) (2023) e12280, http://dx.doi.org/10.1049/tje2.12280.

[17] Y. Xing, F. Li, K. Sun, D. Wang, T. Chen, Z. Zhang, Multi-type electric vehicle load
prediction based on Monte Carlo simulation, J. Energy Rep. 8 (2022) 966–972,
http://dx.doi.org/10.1016/j.egyr.2022.05.264.

[18] A.A. Kadri, R. Perrouault, M.K. Boujelben, C. Gicquel, A multi-stage stochastic
integer programming approach for locating electric vehicle charging stations, J.
Comput. Oper. Res. 117 (2020) 104888, http://dx.doi.org/10.1016/j.cor.2020.
104888.

[19] S. Muthukannan, D. Karthikaikannan, Multiobjective planning strategy for the
placement of electric-vehicle charging stations using hybrid optimization al-
gorithm, J. IEEE Access 10 (2022) 48088–48101, http://dx.doi.org/10.1109/
ACCESS.2022.3168830.

[20] S. Su, Method of location and capacity determination of intelligent charging pile
based on recurrent neural network, J. World Electr. Veh. J. 13 (186) (2022)
186, http://dx.doi.org/10.3390/wevj13100186.

[21] D. Wang, J. Gao, P. Li, B. Wang, C. Zhang, S. Saxena, Modeling of plug-in electric
vehicle travel patterns and charging load based on trip chain generation, J. J.
Power Sources 359 (2017) 468–479, http://dx.doi.org/10.1016/j.jpowsour.2017.
05.036.

[22] J. Yang, F. Wu, J. Yan, Y. Lin, X. Zhan, L. Chen, S. Liao, J. Xu, Y. Sun, Charging
demand analysis framework for electric vehicles considering the bounded ratio-
nality behavior of users, J. Int. J. Electr. Power Energy Syst. 119 (2020) 105952,
http://dx.doi.org/10.1016/j.ijepes.2020.105952.

[23] H. Lv, F. Zhang, M. Wong, Q. Xing, Y. Ji, Activity-based travel chain simulation
for battery-swapping demand of electric micromobility vehicles, J. Transp. Res.
D: Transp. Environ. 126 (2024) 104022, http://dx.doi.org/10.1016/j.trd.2023.
104022.

[24] S. Zhao, J. Zhou, Z. Li, S. Zhang, EV charging demand analysis based on
trip chain theory, J. Electr. Power Autom. Equip. 37 (8) (2017) 111–118,
http://dx.doi.org/10.16081/j.issn.1006-6047.2017.08.014.

[25] National Household Travel Survey[EB/OL].[2023-09-26], https://nhts.ornl.gov/.
[26] D. Tang, P. Wang, Probabilistic modeling of nodal charging demand based on

spatial–temporal dynamics of moving electric vehicles, J. IEEE Trans. Smart Grid
7 (2) (2016) 627–636, http://dx.doi.org/10.1109/TSG.2015.2437415.

[27] X. Ma, Y. Li, H. Wang, C. Wang, X. Hong, Research on demand of charging
piles based on stochastic simulation of EV trip chain, J. Trans. China Electrotech.
Soc. 32 (A2) (2017) 190–202, http://dx.doi.org/10.19595/j.cnki.1000-6753.tces.
L70051.

http://dx.doi.org/10.1016/j.energy.2024.131529
http://dx.doi.org/10.1016/j.energy.2024.131529
http://dx.doi.org/10.1016/j.energy.2024.131529
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb2
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb2
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb2
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb2
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb2
http://dx.doi.org/10.1016/j.jclepro.2023.140162
http://dx.doi.org/10.1016/j.jclepro.2023.140162
http://dx.doi.org/10.1016/j.jclepro.2023.140162
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb4
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb4
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb4
http://dx.doi.org/10.13334/j.0258-8013.pcsee.202001
http://dx.doi.org/10.13334/j.0258-8013.pcsee.202001
http://dx.doi.org/10.13334/j.0258-8013.pcsee.202001
http://dx.doi.org/10.1016/j.apenergy.2014.03.077
http://dx.doi.org/10.1016/j.apenergy.2014.03.077
http://dx.doi.org/10.1016/j.apenergy.2014.03.077
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb7
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb7
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb7
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb8
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb8
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb8
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb8
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb8
http://dx.doi.org/10.7500/AEPS201211031
http://dx.doi.org/10.19781/j.issn.1673-9140.2021.04.002
http://dx.doi.org/10.3969/j.issn.1006-6047.2014.02.001
http://dx.doi.org/10.3969/j.issn.1006-6047.2014.02.001
http://dx.doi.org/10.3969/j.issn.1006-6047.2014.02.001
https://link.cnki.net/urlid/10.1289.TM.20240228.0843.002
http://dx.doi.org/10.1016/j.energy.2024.130844
http://dx.doi.org/10.1016/j.energy.2024.130844
http://dx.doi.org/10.1016/j.energy.2024.130844
http://dx.doi.org/10.13334/j.0258-8013.pcsee.161470
http://dx.doi.org/10.1109/EI250167.2020.9347194
http://dx.doi.org/10.1109/EI250167.2020.9347194
http://dx.doi.org/10.1109/EI250167.2020.9347194
http://dx.doi.org/10.1049/tje2.12280
http://dx.doi.org/10.1016/j.egyr.2022.05.264
http://dx.doi.org/10.1016/j.cor.2020.104888
http://dx.doi.org/10.1016/j.cor.2020.104888
http://dx.doi.org/10.1016/j.cor.2020.104888
http://dx.doi.org/10.1109/ACCESS.2022.3168830
http://dx.doi.org/10.1109/ACCESS.2022.3168830
http://dx.doi.org/10.1109/ACCESS.2022.3168830
http://dx.doi.org/10.3390/wevj13100186
http://dx.doi.org/10.1016/j.jpowsour.2017.05.036
http://dx.doi.org/10.1016/j.jpowsour.2017.05.036
http://dx.doi.org/10.1016/j.jpowsour.2017.05.036
http://dx.doi.org/10.1016/j.ijepes.2020.105952
http://dx.doi.org/10.1016/j.trd.2023.104022
http://dx.doi.org/10.1016/j.trd.2023.104022
http://dx.doi.org/10.1016/j.trd.2023.104022
http://dx.doi.org/10.16081/j.issn.1006-6047.2017.08.014
https://nhts.ornl.gov/
http://dx.doi.org/10.1109/TSG.2015.2437415
http://dx.doi.org/10.19595/j.cnki.1000-6753.tces.L70051
http://dx.doi.org/10.19595/j.cnki.1000-6753.tces.L70051
http://dx.doi.org/10.19595/j.cnki.1000-6753.tces.L70051


Electric Power Systems Research 244 (2025) 111532M. Tang et al.
[28] Y. Hu, C. Qin, S. Lv, H. Wu, Research on the location selection of electric vehicle
charging stations considering user satisfaction and range anxiety, J. J. Wuhan
Univ. Technol.( Transp. Sci. Eng.) (2024) https://link.cnki.net/urlid/42.1824.U.
20240409.1606.103.

[29] Y. Wu, Y. Wang, Y. Zhang, H. Xue, Y. Mi, Siting and sizing method of electric
vehicle charging station based on improved immune clonal selection algorithm,
J. Autom. Electr. Power Syst. 45 (7) (2021) 95–103, http://dx.doi.org/10.7500/
AEPS20200812003.

[30] I. Md.Mainul, S. Hussain, A. Mohamed, Optimal location and sizing of fast charg-
ing stations for electric vehicles by incorporating traffic and power networks, J.
IET Intell. Transp. Syst. 12 (8) (2018) 947–957, http://dx.doi.org/10.1049/iet-
its.2018.5136.

[31] C. Wang, Research on financing mode of EV charging station operating
corporation——a case study of TGOOD, D. Lanzhou Univ. Financ. Econ. (2024)
http://dx.doi.org/10.27732/d.cnki.gnzsx.2023.000022.

[32] Y. Zhang, X. Rao, S. Zhou, Y. Zhou, Research progress of electric vehicle charging
scheduling algorithms based on deep reinforcement learning, J. Power Syst.
Prot. Control. 50 (16) (2022) 179–187, http://dx.doi.org/10.19783/j.cnki.pspc.
211454.

[33] Z. Chen, C. Li, X. Chen, Q. Yang, Towards optimal planning of EV charging
stations under grid constraints, J. IFAC- Pap. 53 (2) (2020) 14103–14108,
http://dx.doi.org/10.1016/j.ifacol.2020.12.1005.

[34] B.A. Kumar, B. Jyothi, A.R. Singh, M. Bajaj, R.S. Rathore, M. Berhanu Tuka,
Hybrid genetic algorithm-simulated annealing based electric vehicle charging
station placement for optimizing distribution network resilience, J. Sci. Rep. 14
(1) (2024) 7637, http://dx.doi.org/10.1038/s41598-024-58024-8.

[35] L. Liu, K. Bai, Z. Dan, S. Zhang, Z. Liu, Whale optimization algorithm with global
search strategy, J. J. Chin. Comput. Syst. 41 (9) (2020) 1820–1825.

[36] S. Qiu, C. Bai, Y. Lv, A. Li, Dynamic weapon target allocation based on the
multi objective whale optimization algorithm, J. J. Ordnance Equip. Eng. 44 (2)
(2023) 153–159, http://dx.doi.org/10.11809/bqzbgcxb2023.02.024.

[37] N.U.I. Quazi, A. Ahmed, S. Mohammad Abdullah, Optimized controller design
for islanded microgrid using non-dominated sorting whale optimization algorithm
(NSWOA), J. Ain Shams Eng. J. 12 (4) (2021) 3677–3689, http://dx.doi.org/10.
1016/j.asej.2021.01.035.

[38] S. Liu, Research on the layout of shared car rental sites based on demand
prediction—taking qixia district of nanjing as an example, D. Nanjing Univ.
Financ. Econ. (2020) http://dx.doi.org/10.27705/d.cnki.gnjcj.2020.000325.

[39] J. Li, C. Liu, Y. Wang, R. Chen, X. Xu, Bi-level programming model approach
for electric vehicle charging stations considering user charging costs, J. Electr.
Power Syst. Res. 214 ( Part A) (2023) 1–8, http://dx.doi.org/10.1016/j.epsr.
2022.108889.

Minan Tang (Senior Member, IEEE) received his Ph.D.
degree in transportation information engineering and con-
trol from Lanzhou Jiaotong University in 2011, China. He
gained his master degree in electronic information engineer-
ing from Lanzhou Jiaotong University in 2006. China. He
was a postdoctoral researcher in intelligent transportation
control of Lanzhou University of Technology, China, in
2012. He is currently a professor and doctoral supervisor
of the college of automation and electrical engineering
of Lanzhou Jiaotong University, China. His research inter-
ests are complex system modeling and control, intelligent
transportation system, process control system, clean energy
generation system and grid connection and power supply
quality control of power system. Professional e-mail address:
tangminan@mail.lzjtu.cn.

Yude Jiang received his bachelor’s degree in automation
from Lanzhou Jiaotong University in 2021, China. He is
currently pursuing the master’s degree in traffic information
engineering and control at Lanzhou Jiaotong University,
China. His research interests are in the direction of
energy-transportation integration, electric vehicle-grid-road
Network synergy, and Charging station siting. Professional
e-mail address: 11230409@stu.lzjtu.edu.cn.
13
Shuyou Yu received his B.S. and M.S. degrees in Con-
trol Science & Engineering at Jilin University, Changchun,
China, in 1997 and 2005, respectively, and the Ph.D. degree
in Engineering Cybernetics at the University of Stuttgart,
Stuttgart, Germany, in 2011. From 2010 to 2011, he was a
Research and Teaching Assistant at the Institute for Systems
Theory and Automatic Control at the University of Stuttgart.
In 2012, he joined the Faculty of the Department of Con-
trol Science & Engineering at Jilin University, Changchun,
China, where he is currently a full professor. Shuyou Yu
was an awardee of the Best Paper Award of Journal of
Process Control in 2017. Currently, he serves as member of
Technical Committees of the IEEE Control System Society
on Process Control, and member of Technical Committees
of IFAC, namely TC 6.1 Chemical Process Control. He
also a member of Technical Committee of Chinese Process
Control, and Deputy Director of Technical Committee of
Model Predictive Control and Intelligent Decision-Making
of Chinese Automation Association. His current research
interests include reinforcement learning and model predic-
tive control, robust control, and applications in mechatronic
systems. Professional e-mail address: shuyou@jlu.edu.cn.

Jiandong Qiu received his Ph.D. degree in vehicle opera-
tion engineering from Lanzhou Jiaotong University, China,
in 2014. He was a senior engineer at the Institute of
Electromechanical Technology, Lanzhou Jiaotong Univer-
sity, China. He is currently a professor and master’s student
supervisor at the College of Mechatronics Engineering,
Lanzhou Jiaotong University, China. His research interests
are vehicle fault diagnosis technology, embedded system
and equipment control, transportation automation logis-
tics equipment and information systems, vehicle equipment
automation and monitoring technology, and power sup-
ply quality control of power systems. Professional e-mail
address: qiujd@mail.lzjtu.cn.

Hanting Li received her master’s degree in control engineer-
ing from Lanzhou Jiaotong University in 2019, China. She
is currently pursuing the Ph.D. degree in traffic information
engineering and control at Lanzhou Jiaotong University,
China. Her Hanting Li research interests are in the direc-
tion of energy-transportation integration, electric vehicle
charging related to power grid, road network, charging
behavior prediction and control. Professional e-mail address:
13230061@stu.lzjtu.edu.cn.

Wenxin Sheng received her bachelor’s degree in electri-
cal engineering and automation from Gansu Agricultural
University, China, in 2023. She is currently pursuing her
master’s degree in Electrical Engineering at Lanzhou Jiao-
tong University, China. Her research interests are the effects
of charging and grid interaction of new energy vehicles
and the use of novel algorithms. Professional Email address:
12231647@stu.lzjtu.edu.cn.

https://link.cnki.net/urlid/42.1824.U.20240409.1606.103
https://link.cnki.net/urlid/42.1824.U.20240409.1606.103
https://link.cnki.net/urlid/42.1824.U.20240409.1606.103
http://dx.doi.org/10.7500/AEPS20200812003
http://dx.doi.org/10.7500/AEPS20200812003
http://dx.doi.org/10.7500/AEPS20200812003
http://dx.doi.org/10.1049/iet-its.2018.5136
http://dx.doi.org/10.1049/iet-its.2018.5136
http://dx.doi.org/10.1049/iet-its.2018.5136
http://dx.doi.org/10.27732/d.cnki.gnzsx.2023.000022
http://dx.doi.org/10.19783/j.cnki.pspc.211454
http://dx.doi.org/10.19783/j.cnki.pspc.211454
http://dx.doi.org/10.19783/j.cnki.pspc.211454
http://dx.doi.org/10.1016/j.ifacol.2020.12.1005
http://dx.doi.org/10.1038/s41598-024-58024-8
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb35
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb35
http://refhub.elsevier.com/S0378-7796(25)00124-5/sb35
http://dx.doi.org/10.11809/bqzbgcxb2023.02.024
http://dx.doi.org/10.1016/j.asej.2021.01.035
http://dx.doi.org/10.1016/j.asej.2021.01.035
http://dx.doi.org/10.1016/j.asej.2021.01.035
http://dx.doi.org/10.27705/d.cnki.gnjcj.2020.000325
http://dx.doi.org/10.1016/j.epsr.2022.108889
http://dx.doi.org/10.1016/j.epsr.2022.108889
http://dx.doi.org/10.1016/j.epsr.2022.108889
mailto:tangminan@mail.lzjtu.cn
mailto:11230409@stu.lzjtu.edu.cn
mailto:shuyou@jlu.edu.cn
mailto:qiujd@mail.lzjtu.cn
mailto:13230061@stu.lzjtu.edu.cn
mailto:12231647@stu.lzjtu.edu.cn

	Non-dominated sorting WOA electric vehicle charging station siting study based on dynamic trip chain
	Introduction
	EV charging load prediction model
	Trip chain analysis
	Charging behavior analysis
	Charging load prediction

	Multi-objective location model for EV charging stations
	Objective function
	Restrictive condition
	Model solving

	Case validation
	Data acquisition
	EV charging load prediction
	Single-objective planning
	Multi-objective planning

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


