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Distributed iterative reinforcement
learning predictive control of truck
platoons
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Abstract
Addressing the issue of insufficient real-time computational capability of the centralized controller in solving multi-
objective and multi-constraint nonlinear optimization problems for truck platoons, this paper proposes a synchronous
distributed model predictive control strategy based on the Predecessor-Leader-Following communication topology. This
approach transforms the global optimization problem of the platoon into local optimization problems for each truck,
allowing all following trucks to solve their own optimization problems in parallel. Addressing the challenges of behavior
prediction arising from the strong coupling characteristics of truck dynamics, a five-degree-of-freedom nonlinear
dynamics model that captures both lateral and longitudinal coupling is developed to predict truck behavior. Additionally,
a lane-keeping model is formulated to ensure that the longitudinal velocity of the trucks in the platoon matches that of
the lead truck, while keeping the trucks within the designated lane. To reduce computational burden, a distributed itera-
tive reinforcement learning predictive control scheme based on actor-critic networks is introduced. Co-simulation
results using Matlab/Simulink and TruckSim demonstrate that the proposed strategy ensures both longitudinal velocity
tracking and lateral lane-keeping performance, while providing better computational efficiency than conventional non-
linear model predictive control algorithms.

Keywords
Truck platoon, distributed model predictive control, lateral and longitudinal coupling, lane-keeping, reinforcement
learning

Date received: 7 November 2024; accepted: 2 June 2025

Introduction

Throughout the last decades, the rapid and widespread
adoption of vehicles raises significant concerns about
energy security and traffic issues.1,2 According to the
National Highway Traffic Safety Administration,
about 84% of traffic accidents are attributed to human
factors.3 The technology of autonomous vehicle pla-
toons has the potential to significantly reduce the risk
of accidents caused by driver fatigue or error.4–7

Furthermore, the vehicle platoons can significantly
reduce air resistance between vehicles. This reduces
exhaust emissions and fuel consumption, while increas-
ing road throughput.8–10

The accuracy of the nominal model in representing
vehicle dynamic characteristics significantly affects
vehicle handling stability under high-speed condi-
tions.11 In existing studies on vehicle platoon modeling,
vehicles are often simplified as linear point-mass mod-
els, such as the single integrator model, double

integrator model, or third-order model.12–14 However,
these models ignore the dynamic characteristics of vehi-
cle systems, which makes them unsuitable under com-
plex driving conditions. A nonlinear longitudinal
dynamics model incorporating engine dynamics, rolling
resistance, and aerodynamic drag is proposed.15,16 This
model captures the vehicle’s longitudinal dynamics
more accurately. Nevertheless, these models primarily
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focus on longitudinal dynamics and fail to represent
vehicle lateral dynamics in scenarios such as cornering
or lane changes, and are therefore only applicable to
vehicle platoons traveling on straight roads. For pla-
toons traveling on curved roads, it is necessary to
account for lateral dynamics.17 A nonlinear bicycle
model is employed to describe lateral dynamics, and a
predictive controller is designed to ensure both longitu-
dinal tracking performance and lateral stability.18

Similarly, a lateral controller based on a lane-keeping
model is developed to ensure that vehicles in the pla-
toon remain within the designated lane.19 However,
these lateral models typically assume constant longitu-
dinal velocity and focus only on lateral and yaw
motions, neglecting the influence of longitudinal
dynamics. In practice, coupling between longitudinal
and lateral motions during cornering exists, and ignor-
ing this coupling degrades the performance of pla-
toon.20 Moreover, compared with conventional
passenger vehicles, trucks have greater mass, wheel-
base, turning radius, and moment of inertia.21 Under
conditions involving high lateral/longitudinal accelera-
tion or low road adhesion coefficients, the coupling
effect and tire nonlinearities become more pronounced.
Consequently, the development of a unified model that
accurately characterizes the coupling between lateral
and longitudinal dynamics, incorporates the nonlinear
behavior of tires, and comprehensively reflects both
longitudinal tracking accuracy and lateral stability is of
critical importance.

Control of vehicle platoon is classified into centra-
lized and distributed control. The centralized approach
extends traditional single-vehicle control strategies,
using a central unit to coordinate all vehicles’ beha-
viors. In contrast, distributed control eliminates centra-
lized coordination, with each vehicle employing its own
controller for autonomous decision-making. This
approach offers greater reliability, adaptability, and
robustness, especially in scenarios with restricted com-
munication range and large platoon sizes. As a result,
distributed control has become the predominant meth-
odology in vehicle platoon systems. A longitudinal dis-
tributed control strategy for connected automated
vehicles (CAVs) under communication cyberattacks is
proposed.22 A distributed sliding mode control scheme
is developed to ensure coordinated behavior within
vehicle platoons.23 A distributed model reference adap-
tive control strategy is designed to tackle inherent
uncertainties in heterogeneous multi-agent systems.24

Distributed model predictive control (DMPC), capable
of handling multi-input multi-output systems and
multi-objective constrained optimization problems, has
attracted considerable attention in recent years and has
been successfully applied to control of vehicle pla-
toons.25–27 A distributed model predictive control algo-
rithm is proposed to ensure g-gain stability of vehicle
platoons.28 A distributed model predictive controller
for nonlinear vehicle platoons is developed to guaran-
tee string stability.29 A distributed model predictive

control scheme is formulated to ensure local stability
while satisfying multi-criteria string stability require-
ments.30 Current DMPC implementations for vehicle
platoons are still restricted by computational ineffi-
ciency and suboptimality in solving constrained optimi-
zation problems. These challenges become more severe
when considering nonlinear vehicle dynamics with
coupled longitudinal and lateral characteristics. Under
such conditions, the DMPC algorithm may fail to com-
pute feasible solutions within the required sampling
intervals. Therefore, efficiently solving optimization
problems in DMPC for vehicle platoons while account-
ing for the coupling between longitudinal and lateral
dynamics remains a critical technical bottleneck in
intelligent transportation systems.

Reinforcement learning (RL), as an advanced policy
optimization methodology, has shown considerable
promise in complex system control and has been
widely adopted in intelligent transportation systems.
Particularly, multi-agent reinforcement learning (MARL)
has demonstrated effective multi-vehicle coordination cap-
abilities in control of vehicle platoons.31 A MARL-based
cooperative adaptive cruise control (CACC) strategy is
proposed to optimize platoon stability and energy effi-
ciency for CAVs.32 A distributed control architecture is
proposed, where a deep reinforcement learning agent opti-
mizes vehicle platoon acceleration on curved roads
through iterative interaction with the lateral controller.33

A guided deep deterministic policy gradient (DDPG)
framework is proposed to enhance the convergence effi-
ciency of RL-based controllers.34,35 CACC is reformulated
as a decentralized MARL task, eliminating the need for
centralized controllers during both training and deploy-
ment to improve scalability and robustness.36 However,
the aforementioned MARL-based approaches have these
limitations: (1) reliance on third-order integrator kinematic
models, capturing only position, velocity, and acceleration
relationships, ignoring vehicle dynamics coupling and tire
nonlinearities; (2) lack of constraint-handling mechanisms
inherent to DMPC frameworks.

Reinforcement learning has demonstrated superior
exploration capabilities in high-dimensional solution
spaces, making it a powerful tool for tackling non-
convex optimization problems.37 The RL-DMPC inte-
grated framework combines the advantage of RL in sol-
ving non-convex optimization problems with the
strength of DMPC in constraint handling.38 Current
research has made preliminary attempts at integration: a
distributed algorithm that integrates deep reinforcement
learning with DMPC is proposed, where deep reinforce-
ment learning is utilized for reference trajectory genera-
tion, and DMPC is employed to track the trajectories
while ensuring collision avoidance among vehicles.39

However, this integration does not effectively address
the computational inefficiency inherent in DMPC. A
distributed learning-based predictive control framework
is proposed to generate DMPC’s closed-loop control
policies for multi-robot coordination.40 Nevertheless,
their reliance on fixed communication topologies
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conflicts with the dynamic networking needs of vehicle
platoons. To the best of the authors’ knowledge, no sys-
tematic study has explored the co-design of RL and
DMPC for vehicle platoon controls.

In this paper, a nonlinear model of vehicle platoon is
proposed, which combines the five-degree-of-freedom
(5-DOF) dynamic model with the lane-keeping model.
Then, a distributed model predictive control strategy
for vehicle platoons is introduced. Furthermore, an
iterative reinforcement learning predictive control
(RLPC) algorithm is suggested to effectively handle the
constrained optimization problem for each following
vehicle. The effectiveness of these algorithms is verified
by co-simulation using MATLAB/Simulink and
TruckSim. The primary contributions of this paper
include:

(1) A 5-DOF nonlinear dynamics model and a lane-
keeping model have been employed to construct a
vehicle platoon model that effectively captures the
coupled lateral and longitudinal characteristics of
the vehicles, as well as the nonlinear behavior of
tires;

(2) A distributed model predictive controller for vehi-
cle platoons considering lateral and longitudinal
coupling is proposed, which achieves cooperative
of both lateral and longitudinal coordinated con-
trol of vehicle platoons;

(3) This paper proposes an iterative RLPC algorithm
based on the actor-critic neural network. The
algorithm is designed to generate an explicit
closed-loop DMPC policy capable of handling
non-convex constrained optimization problems
for platoon vehicles in real time. Co-simulation
experiments show that the developed controller
successfully achieves the lateral and longitudinal
control objectives of the vehicle platoon. In com-
parison to the conventional nonlinear model pre-
dictive control (NMPC) algorithm, the introduced
iterative RLPC algorithm has been demonstrated
to exhibit superior computational efficiency.

The rest of this paper is structured as follows:
Section ‘‘Problem setup’’ provides a detailed problem
description, covering the communication topology, the
vehicle platoon model, and the objectives of vehicle
platoon control. Section ‘‘Distributed model predictive

control strategy’’ describes a distributed model predic-
tive controller tailored for the vehicle platoon. Section
‘‘Iterative reinforcement learning predictive control
scheme’’ introduces the iterative RLPC algorithm.
Section ‘‘Simulation’’ shows results of co-simulation
experiments using Matlab/Simulink and TruckSim.
The conclusion is drawn in Section ‘‘Conclusion.’’

Problem setup

In the vehicle platoon, the leading vehicle is numbered
0, while the following vehicles are numbered 1 � � �N.
The leading vehicle, operated by a human driver, is
capable of handling emergencies or unexpected events,
which contributes to the overall safety of the platoon.
This paper investigates the cooperative control of vehi-
cle platoons in highway scenarios and employs a
Predecessor-Leader-Following (PLF) communication
topology, as illustrated in Figure 1, where each follow-
ing vehicle communicates with its preceding vehicle in
the platoon. This topology demonstrates low communi-
cation latency, making it well-suited for highway envir-
onments. The required symbols for the vehicle platoon
system are presented in Table 1.

Vehicle dynamics

In this paper, a 5-DOF vehicle dynamics model
(Figure 2) is adopted to represent a two-axle truck,
incorporating additional degrees of freedom associ-
ated with wheel rotation.41

Figure 1. Predecessor-Leader-Following topology.

Table 1. Symbols for the vehicle platoon system.

Symbol Description

xi Position of the ith vehicle
vx
i Longitudinal velocity of the ith vehicle

v
y
i Lateral velocity of the ith vehicle
_u The yaw rate of the ith vehicle
wf

i The front wheel angular velocity of the ith vehicle
wr

i The rear wheel angular velocity of the ith vehicle
Izi The inertia moment around the z-axis
ai The distances from front axle to mass center
bi The distances from rear axle to mass center
Re The rolling radius of the wheel
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The classical 3-DOF dynamics model considers the
vehicle’s motion in the longitudinal, lateral, and yaw
directions, which is expressed as follows:

mi _v
x
i �miv

y
i _ui =Fxf

i cos di � F
yf
i sin di +Fxr

i

mi _v
y
i �miv

x
i _ui =Fxf

i sin di +F
yf
i cos di +F

yr
i

Izi _ui = ðF
xf
i sin di +F

yf
i cos diÞai � F

yr
i bi

8><
>: ð1Þ

where vxi and v
y
i denote the longitudinal and lateral

velocities of the ith vehicle, _ui denotes its yaw rate, mi

denotes its mass, Fxf
i and Fxr

i denote the longitudinal
forces of the front and rear tires, Fyf

i and Fyr
i denote the

lateral forces of the front and rear tires, ai and bi denote
the distances from the center of mass to the front and
rear axles, di denotes the front wheel steering angle, and
Izi denotes the moment of inertia of the ith vehicle.

The forces on the wheel are shown in Figure 3, and
the corresponding dynamic equations are as follows:

_wf
i =

Td
i �ReF

xf
i

Jf
i

_wr
i =

Td
i �ReF

xr
i

Jr
i

8<
: ð2Þ

where wf
i and wr

i denote the angular velocities of the
front and rear wheels of the ith vehicle, Jfi and Jri denote
the moments of inertia of the front and rear wheels, Re

denotes the effective rolling radius of the wheel, and Td
i

denotes the driving/braking torque.
Combing the classical 3-DOF dynamics model with

(2), then a 5-DOF dynamics model is obtained:

_vxi = v
y
i _ui +

Fxf
i
cos di�Fyf

i
sin di +Fxr

i

mi

_vyi = � vxi _ui +
Fxf
i
sin di +F

yf
i
cos di +F

yr
i

mi

€ui =
Fxf
i
sin di +F

yf
i
cos dið Þai�Fyr

i
bi

Iz
i

_wf
i =

Td
i �ReF

xf
i

Jf
i

_wr
i =

Td
i �ReF

xr
i

Jr
i

:

8>>>>>>>>>><
>>>>>>>>>>:

ð3Þ

The state variables of this model include the longitu-
dinal velocity, lateral velocity, yaw rate, front wheel

angular velocity, and rear wheel angular velocity of the
vehicle. The control inputs are the front wheel steering
angle and driving/braking torque.

As a crucial component of vehicle dynamics, an
accurate tire model plays a significant role in controller
design. In this paper, the Magic Formula is employed
to calculate the tire force,42 which is:

Fx
i =Dsin (Carctan (Bki � E(Bki
�arctanBki)))
F
y
i =Dsin (Carctan (Bai � E(Bai

�arctanBai)))

8>><
>>: ð4Þ

where B, C, D, and E denote the stiffness, shape, peak,
and curvature factors, respectively. The terms ki and ai

denote the slip ratio and slip angle of the tire, and Fx
i and

F
y
i denote the longitudinal and lateral forces of the tire.
The slip ratio of front and rear wheel are defined as

follows:

kfi =
wf
i
�Re�vxfi
vxf
ij j

kri =
wr
i �Re�vxri
vxr
ij j

:

8><
>: ð5Þ

The slip angle of front and rear wheel are defined as
follows:

a
f
i =sgn vxfi

� �
� arctan v

yf
i

vxf
i

� �
ar
i =sgn vxri

� �
� arctan vyr

i

vxr
i

� �
8><
>: ð6Þ

where vxfi and vxri denote the longitudinal velocities of
the front and rear wheels in the tire coordinate sys-
tem, v

yf
i and v

yr
i denote the lateral velocities of the

front and rear wheels in the tire coordinate system.
Furthermore,

Figure 2. 5-DOF vehicle dynamics model.

Figure 3. Forces on the wheel.
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vxfi = vx, 1i cos dið Þ+ v
y, 1
i sin dið Þ

v
yf
i = � vx, 1i sin dið Þ+ v

y, 1
i cos dið Þ

vxri = vx, 2i

v
yr
i = v

y, 2
i

8>>><
>>>:

ð7Þ

where vx, 1i and vx, 2i denote the longitudinal velocities of
the front and rear wheels in the vehicle coordinate sys-
tem, vy, 1i and vy, 2i denote the lateral velocities of the
front and rear wheels in the vehicle coordinate system,
and

vx, 1i = vxi
v
y, 1
i = v

y
i + _ui � ai

vx, 2i = vxi
v
y, 2
i = v

y
i � _ui � bi:

8>>><
>>>:

ð8Þ

The lane-keeping model

The longitudinal position error of the ith vehicle in the
platoon is defined as follows:

e
p
i = xi � xi�1 � ddesð Þ ð9Þ

where xi and xi�1 denote the longitudinal positions
of the ith vehicle and its predecessor, respectively.
This paper adopts the constant inter-vehicle spacing
(Figure 4) policy,43 that is, ddes= d0.

As shown in Figure 5, eyi denotes the lateral position
error between the vehicle and the center line of the lane,
and eu

i denotes the heading angle error, which is calcu-
lated as:

eu
i =ui, des � ui ð10Þ

where ui and ui, des denote the heading angle of the vehi-
cle and the tangential angle of the lane, respectively.

Therefore, the relationships for Vehicle-to-Road and
Vehicle-to-Vehicle are as follows44:

_epi = vxi � vxi�1
_eyi = vxi e

u
i � v

y
i � L _ui

_eu
i = _ui, des � _ui

8<
: ð11Þ

where _ui, des= vxi =R denotes the desired yaw rate of the
ith vehicle, L denotes the look-ahead distance, and R

denotes the radius of curvature at the look-ahead point
on the road.

Assumption 1: In this study, the following assumptions
are made regarding the communication system: (1)
vehicles in the platoon maintain clock synchronization;
(2) inter-vehicle communication is ideal, without chan-
nel fading, packet loss, or communication delay; (3) all
sensor measurements are noise-free.

Assumption 2: The leading vehicle, operated by a
human driver, has its longitudinal position and velocity
known, and the road curvature is known.

Control objective of vehicle platoons

Each following vehicle in the platoon, operating within
a distributed control framework, collects state data via
on-board sensors and V2V communication. The control
objectives of vehicle platoons are as follows:

(1) All vehicles in the platoon maintain the same
velocity as the leading vehicle while keeping a safe
distance to the front and rear vehicles.

lim
t!‘
kvxi tð Þ � vx0 tð Þk=0

lim
t!‘
kxi�1 tð Þ � xi tð Þ � ddesk=0:

(
ð12Þ

(2) The trajectories of vehicles in the platoon should
align with the prescribed lane, that is, the lateral
position error and heading angle error of the ith

vehicle relative to the lane should be minimized as
much as possible.

lim
t!‘
keyi tð Þk=0

lim
t!‘
keu

i tð Þk=0:

(
ð13Þ

Distributed model predictive control
strategy

This section proposes a distributed model predictive
controller that accounts for the coupling between

Figure 4. Constant inter-vehicle spacing.

Figure 5. Lane-keeping model.
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longitudinal and lateral dynamics. The schematic dia-
gram of the proposed control architecture is shown in
Figure 6.

Integrated vehicle platoon model

By integrating the 5-DOF dynamic model (3) with the
lane-keeping model (11), an integrated vehicle platoon
model is derived as follows:

_vxi = v
y
i _ui +

Fxf
i
cos di�Fyf

i
sin di +Fxr

i

mi

_vyi = � vxi _ui +
Fxf
i
sin di +Fyf

i
cos di +Fyr

i

mi

_ui =
Fxf
i
sin di +F

yf
i
cos dið Þai�Fyr

i
bi

Iz
i

_wf
i =

Td
i �ReF

xf
i

Jf
i

_wr
i =

Td
i �ReF

xr
i

Jr
i

_epi = vxi � vxi�1
_eyi = vxi e

u
i � v

y
i � L _ui

_eu
i = _ui, des � _ui:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð14Þ

The state of the vehicle platoon is defined as follows:

xi = vxi v
y
i _ui wf

i wr
i e

p
i e

y
i eu

i

� 	T
: ð15Þ

The output of the vehicle platoon is defined as
follows:

yi = vxi e
p
i e

y
i eu

i

� 	T
: ð16Þ

The control inputs include the driving/braking tor-
que and the front wheel steering angle, as follows:

ui = Td
i di

� 	T
: ð17Þ

Therefore, system (14) can be rewritten as follows:

_xi = �fi xi, uið Þ
yi =Cixi



ð18Þ

where xi 2 R8, ui 2 R2,

Ci =

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

2
664

3
775

With a sampling time of Ts, system (18) is discretized
as:

xi k+1ð Þ= fi xi kð Þ, ui kð Þð Þ
yi kð Þ=Cixi kð Þ:



ð19Þ

Distributed model predictive controller with coupled
longitudinal and lateral dynamics

Based on the integrated vehicle platoon model, a coop-
erative controller is designed. In the distributed control
framework, each following vehicle simultaneously
solves its own local optimization problem.

The desired outputs of system (19) are denoted as
follows:

yi, des kð Þ=
½vxi, des kð Þ e

p
i, des kð Þ e

y
i, des kð Þ eu

i, des kð Þ�
T ð20Þ

where vxi, des denotes the desired longitudinal velocity of
the ith vehicle, with vxi, des= vx0. The terms epi, des, e

y
i, des

and eu
i, des denote the desired longitudinal position error,

lateral position error, and yaw angle error, where
epi, des=0, eyi, des=0, and eu

i, des=0.
The tracking error of the ith vehicle is defined as

follows:

ei kð Þ= yi kð Þ � yi, des kð Þ:

The control sequence over the prediction horizon Np

is defined as follows:

Ui kjkð Þ=
ui

T kjkð Þ, uiT k+1jkð Þ, � � �, uiT k+Np�1jk
� �� 	T ð21Þ

Figure 6. The distributed control framework of the vehicle platoon.
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At time k, the optimization problem to be solved by
the ith vehicle is formulated as follows:

Problem 1

minmize
Ui kð Þ

Ji ei kjkð Þ,Ui kjkð Þð Þ ð22aÞ

s:t:

xi k+ j+1 kjð Þ= fi xi k+ jjkð Þ, ui k+ jjkð Þð Þ
ð22bÞ

yi k+ jjkð Þ=Cixi k+ jjkð Þ ð22cÞ

yi kjkð Þ= yi kð Þ ð22dÞ

Td
i,min4Td

i k+ jjkð Þ4Td
i,max ð22eÞ

di,min4di k+ jjkð Þ4di,max ð22fÞ

ei k+Npjk
� �

=0 ð22gÞ

where

Ji ei kð Þ,Ui kð Þð Þ

=
PNp�1

j=0

kei k+ jjkð Þk2Qi
+kui k+ jjkð Þk2Ri

� � ð23Þ

The terms Qi and Ri are symmetric positive definite
weight matrices. The terms Td

i, min and Td
i, max denote the

minimum and maximum torques, where Td
i, min =�

Td
i, max, and di, min and di, max denote the minimum and

maximum front wheel steering angles, with di, min =
�di, max.

The terminal equality constraint (22g) ensures con-
vergence of the predicted state to the equilibrium
point at the end of the control horizon. In the absence
of external disturbances and modeling uncertainties,
the control inputs beyond the horizon can be set to
zero, maintaining the system remains at the equili-
brium point.45,46 The cost function (23) is defined as
follows:

Ji =
PNp�1

j=0

ðkei k+ jjkð Þk2Qi
+ kui k+ jjkð Þk2Ri

Þ

=
P‘
j=0

ðkei k+ jjkð Þk2Qi
+ kui k+ jjkð Þk2Ri

Þ
ð24Þ

The cost function in Problem 1 is defined over an infi-
nite horizon. If a solution exists, denoted by U�i kjkð Þ,
the corresponding predictive control law at time step k
is defined as follows:

k xi kð Þð Þ :¼ ½ I232 0 � � � 0 �232Np
U�i kjkð Þ, ð25Þ

The system under control can be characterized as
follows:

xi k+1ð Þ= fi xi kð Þ, k xi kð Þð Þð Þ, kø 0

yi kð Þ=Cixi kð Þ
ð26Þ

Lemma 1: Suppose that46

(a) At k=0, there exists a feasible solution to the
constrained optimization Problem 1.

(b) The output yi exhibits zero-state observability.

For nominal systems that exclude external disturbances
and model uncertainties, the following holds:

(1) For any k. 0, Problem 1, updated using the state
measurement xi kð Þ, admits a solution.

(2) The closed-loop system (26), composed of (25), is
nominally asymptotically stable.

The terminal equality constraint increases computa-
tional complexity and may render the optimization
problem infeasible. To address this, constraint (22g) is
reformulated as a soft constraint, which ensuring
both computational efficiency and the feasibility of
Problem 1, while driving the terminal state to converge
to the equilibrium point, thereby guaranteeing the
asymptotic stability of the closed-loop system.45,46

Meanwhile, the cost function of Problem 1 is modified
as follows:

Ji ei kð Þ,Ui kð Þð Þ

=
PNp�1

j=0

kei k+ jjkð Þk2Qi
+kui k+ jjkð Þk2Ri

� �
+kei k+Np

� �
k2Pi

ð27Þ

where Pi denotes the terminal penalty matrix. In this
paper, based on empirical data, the terminal penalty
matrix is selected as Pi =10Qi.

Iterative reinforcement learning
predictive control scheme

The distributed control framework decomposes the glo-
bal optimization problem into a series of local optimi-
zation problems. However, for nonlinear systems
described by (19), solving the non-convex problem at
each sampling instant is generally time-consuming. As
the system state and control dimensions increase, the
computational burden grows significantly. An iterative
RLPC algorithm is proposed in this section to effi-
ciently solve the non-convex problem, as shown in
Figure 7.
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Finite-horizon iterative RLPC algorithm

The iterative RLPC algorithm integrates policy itera-
tion with the actor-critic architecture in RL, thereby
replacing conventional numerical solvers (e.g. IP meth-
ods). At each sampling time, the algorithm solves a con-
strained optimization problem to obtain an optimal or
sub-optimal control sequence over the prediction hori-
zon. Specifically, within the prediction horizon
j 2 ½0,Np � 1�, Np actor networks approximate the opti-
mal control sequence U�i ei k+ jjkð Þð Þ, while Np critic
networks approximate the derivative l�i ei k+ jjkð Þð Þ of
the optimal cost function J�i ei k+ jjkð Þð Þ with respect to
the error ei k+ jjkð Þ.

The stage cost is defined as follows:

ri ei k+ jjkð Þ, ui k+ jjkð Þð Þ= kei k+ jjkð Þk2Qi

+kui k+ jjkð Þk2Ri
:

ð28Þ

Suppose that there exists a optimal control
policy in Problem 1. According to the Bellman’s
Optimality Principle, the optimal cost function of the
system satisfies the following discrete-time HJB
equation47,48:

J�i ei k+ jjkð Þð Þ=

min
k�U�1uik‘41

r ei k+ jjkð Þ, ui k+ jjkð Þð Þ
+ J�i ei k+ j+1jkð Þð Þ

� �
,

J�i ei k+Npjk
� �� �

= kei k+Npjk
� �

k2Pi
:

8>><
>>: ð29Þ

The optimal control u�i ei k+ jjkð Þð Þ satisfies:

u�i ei k+ jjkð Þð Þ=

argmin
k�U�1uik‘41

ri ei k+ jjkð Þ, ui k+ jjkð Þð Þ
+ J�i ei k+ j+1jkð Þð Þ

� �
, ð30Þ

where �U=diagðTd
i,max, di,maxÞ denotes the control input

constraint matrix. It is worth noting that the constraint
k �U�1uik‘41 is equivalent to

max

Td

i

����
����

Td
i,max

,
dij j

di,max

0
BB@

1
CCA41,

which indicates that the control inputs satisfy the given
constraints.

In each prediction horizon, due to the high compu-
tational burden of accurately solving the nonlinear
HJB equation (29), a finite-horizon iterative RLPC
algorithm is developed to approximate an optimal or
suboptimal control policy. Within the prediction hori-
zon ½k, k+Np � 1�, the finite-horizon iterative RLPC
algorithm is initialized with a cost function
J0i ei k+ jjkð Þð Þ=0. Then, for l=0, 1, � � � and
j 2 ½0,Np � 1�, the control input uli ei k+ jjkð Þð Þ is calcu-
lated as follows:

uli ei k+ jjkð Þð Þ=

argmin
k�U�1uik‘41

ri ei k+ jjkð Þ, ui k+ jjkð Þð Þ
+ Jli ei k+ j+1jkð Þð Þ

� �
: ð31Þ

The cost function Jl+1
i ei k+ jjkð Þð Þ is updated as

follows:

Figure 7. Diagram of the iterative RLPC algorithm.
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Jl+1
i ei k+ jjkð Þð Þ= r ei k+ jjkð Þ, ui k+ jjkð Þð Þ

+ Jli ei k+ j+1jkð Þð Þ,
Jli ei k+Np

� �� �
= kei k+Np

� �
k2Pi

:

8<
:

ð32Þ

Theorem 1: Let uli and Jli be defined by (31) and (32). If
J0i ei k+ jjkð Þð Þ=0, then as the number of iterations l
approaches infinity, uli converges to u�i , and Jli to J�i .

Theorem 1 proves the convergence of the iterative
finite-horizon RLPC algorithm under the assumption
of infinite iterations and the initial condition
J0i ei k+ jjkð Þð Þ=0. However, this assumption is con-
servative in practice, particularly for convex problems
where optimal solutions are typically attainable within
finite iterations.

To reduce the computational burden of on-board
systems while maintaining tracking performance, it is
essential to determine a priori both the maximum
number of iterations and the convergence threshold.
Let the convergence threshold be denoted by e . 0.
According to Theorem 1, within the prediction horizon
j 2 ½0,Np � 1�, there exists an iteration number l such
that:

Jl+1
i ei k+ jjkð Þð Þ � Jli ei k+ jjkð Þð Þ

�� ��4e: ð33Þ

The convergence threshold e quantifies the accepta-
ble deviation between the suboptimal and optimal solu-
tions. When the convergence criterion (33) is satisfied,
the solution uli is considered e-optimal, denoted by ue�

i ,
with the corresponding cost Je�

i . Instead of seeking the
global optimal solution to the non-convex problem, the
algorithm aims for the e-optimal solution ue�

i that satis-
fies (33), thereby balancing optimality and computa-
tional efficiency.

The main procedures of the iterative RLPC algo-
rithm is summarized as Algorithm 1.

Remark 1: In the iterative RLPC approach, the finite-
horizon iterative RLPC algorithm, as described above,
is used to obtain an e-optimal control policy ue�

i within
each prediction horizon.

Efficient solving of iterative RLPC algorithm based on
neural networks

To mitigate computational and storage burdens, neural
networks are commonly employed to approximate
value functions and policies in continuous state spaces.
In this section, as an effective and practical realization
of the iterative RLPC scheme, neural networks, in con-
junction with kernel-based basis functions, are inte-
grated into the iterative RLPC algorithm.

In this paper, radial basis function networks are cho-
sen for both the actor and critic networks. The structure
of the actor network is as follows48:

uli(ei k+ jjkð Þ)

= �UG
PMa

m=1

v
½m�
a, l k+ jjkð Þc½m� ei k+ jjkð Þð Þ

� �
= �UG Wa, l k+ jjkð ÞTC ei k+ jjkð Þð Þ

� �
ð34Þ

where G �ð Þ is a monotonic odd function and kG �ð Þk41.
The first-order derivatives of the �U and G are bounded.
The term Ma denotes the number of center points in
the hidden layer of the actor network, The term
v
½m�
a, l k+ jjkð Þ 2 R2 denotes the weight vector between

the mth center point and the output layer of the jth actor
network when the iteration number is l. The term
c½m� ei k+ jjkð Þð Þ denotes the activation function of the
mth center point in the hidden layer of actor network,
Wa, l k+ jjkð Þ denotes the weight matrix of the jth actor
network.

The structure of the critic network is defined as
follows:

ll
i ei k+ jjkð Þð Þ=

PMc

m=1

v
½m�
c, l k+ jjkð Þf½m� ei k+ jjkð Þð Þ

=Wc, l k+ jjkð ÞTF ei k+ jjkð Þð Þ
ð35Þ

where Mc is the number of center points of the hidden
layer of critic network, v

½m�
c, l k+ jjkð Þ 2 R4 denotes the

weight vector between the mth center point and the out-
put layer of the jth critic network when the iteration
number is l. The term f½m� ei k+ jjkð Þð Þ denotes the acti-
vation function of the mth center point in the hidden
layer of critic network, Wc, l k+ jjkð Þ denotes the weight
matrix of the jth critic network.

In all neural networks, the parameters to be deter-
mined include the center points of the hidden layer and
the weights from the hidden layer to the output layer.

Algorithm 1. Iterative RLPC algorithm

Step 1: Initialize: l = 0, j = 0, J0i ei k + jjkð Þð Þ= 0, e . 0,
and maximum number of iterations lmax;

Step 2: Calculate ul
i ei k + jjkð Þð Þ using (31);

Step 3: Generate the next state ei k + j + 1jkð Þ using (19);
Step 4: Calculate Jl + 1

i ei k + jjkð Þð Þ using (32);
Step 5: If j = Np � 1, return; else, set j = j + 1 and go back

to Step 2;
Step 6: If l = lmax or Jl + 1

i ei k + jjkð Þð Þ � Jli ei k + jjkð Þð Þ
�� ��\ e,

8j 2 0, Np � 1
� 	

, return; else set l = l + 1, j = 0 and
go back to Step 2.

Yu et al. 9



In this paper, the center points of the hidden layer are
randomly selected within the input variable range and
remain constant. Thus, the parameter to be estimated
is the weight connecting the hidden layer to the output
layer.

In the iterative RLPC algorithm based on neural net-
works, the actor neural network and the critic neural
network respectively perform policy updates and eva-
luations in Algorithm 1 through weight adjustments.48

(1) weight update of actor network

W
p+1
a, l k+ jjkð Þ

= C ei k+ jjkð Þð ÞC ei k+ jjkð Þð ÞT
� ��1

C ei k+ jjkð Þð Þ

3 G�1 �U
�1
� 1

2Ri

∂ei k+ j+1jkð Þ
∂ul, p

i
ei k+ jjkð Þð Þ

� �T

3Wc, l k+ j+1jkð ÞT
3F ei k+ j+1jkð Þð Þ

0
BB@

1
CCA

0
BB@

1
CCA

0
BB@

1
CCA

T

,

j 2 0,Np � 2
� 	

ð36Þ

and

W
p+1
a, l k+ jjkð Þ

= C ei k+ jjkð Þð ÞC ei k+ jjkð Þð ÞT
� ��1

C ei k+ jjkð Þð Þ

3 G�1 �U
�1 � 1

2Ri

∂ei k+ j+1jkð Þ
∂u

l, p
i

ei k+ jjkð Þð Þ

� �T

32Piei k+ j+1jkð Þ))

0
@

1
A

0
@

1
A

0
@

1
A

T

,

j=Np � 1

ð37Þ

where Wp+1
a, l k+ jjkð Þ denotes the weight matrix of the

jth actor network during the lth policy evaluation and
pth policy update, Wc, l k+ jjkð Þ denotes the weight
matrix of the jth critic network in the lth policy evalua-
tion, u

l, p
i ei k+ jjkð Þð Þ denotes the output of the jth actor

network during the lth policy evaluation and the pth

policy update, G�1 �ð Þ is the inverse function of G �ð Þ.

(2) weight update of critic network

Wc, l+1 k+ jjkð Þ
= ðFðeiðk+ jjkÞÞFðeiðk+ jjkÞÞTÞ�1Fðeiðk+ jjkÞÞ

3ð2Qieiðk+ jjkÞ+ ∂eiðk+ j+1jkÞ
∂ei k+ jjkð Þ

� �T

3Wc, lðk+ j+1jkÞTFðeiðk+ j+1jkÞÞÞT,
j 2 ½0,Np � 2�

ð38Þ

and

Wc, l+1 k+ jjkð Þ
= F ei k+ jjkð Þð ÞF ei k+ jjkð Þð ÞT
� ��1

F ei k+ jjkð Þð Þ

3 2Qiei k+ jjkð Þ+ ∂ei k+ j+1jkð Þ
∂ei k+ jjkð Þ

� �T
32Piei k+ j+1jkð Þ

 !T

,

j=Np � 1

ð39Þ

where Wc, l+1 k+ jjkð Þ denotes the weight matrix of the
jth critic network in the l+1th policy evaluation.

Lemma 2: In the iterative RLPC algorithm based on
neural networks, the weights of the actor networks are
iteratively updated according to (36) and (37), while
the weights of the critic networks are updated according
to (38) and (39). As the number of iterations l approa-
ches infinity, uli converges to u�i , Jli to J�i , and ll

i to
l�i .

47,48 Consequently, the output of the actor network
corresponds to the optimal solution of Problem 1.

Proof: A note that Ji is continuously differentiable with
respect to ui. When the cost function is minimized, the
optimal solution u�i k+ jjkð Þ should satisfy:

∂J�i ei k+ jjkð Þð Þ
∂u�i k+ jjkð Þ =0: ð40Þ

The derivative of u�i k+ jjkð Þ on the right side of the
first equation in (29) can be obtained as follows:

∂ ri ei k+ jjkð Þ, u�i k+ jjkð Þð Þ+ J�i ei k+ j+1jkð Þð Þð Þ
∂u�

i
k+ jjkð Þ

=
∂ri ei k+ jjkð Þ, u�i k+ jjkð Þð Þ

∂u�
i
k+ jjkð Þ

+ ∂ei k+ j+1jkð Þ
∂u�

i
k+ jjkð Þ

� �T
∂J�i ei k+ j+1jkð Þð Þ
∂ei k+ j+1jkð Þ

=0:

ð41Þ

Substituting (28) into (41) gives:

u�i k+ jjkð Þ= � 1
2Ri

∂ei k+ j+1jkð Þ
∂u�

i
k+ jjkð Þ

� �T
3l�

i
ei k+ j+1jkð Þð Þ

ð42Þ

where

l�i ei k+ jjkð Þð Þ= ∂J�i ei k+ jjkð Þð Þ
∂ei k+ jjkð Þ : ð43Þ

Let (34) be equal to the right side of (42), from
which the weight update of the actor network, given by
(36), follows. As observed from (36), the output
ll
i ei k+ j+1jkð Þð Þ=Wc, l k+ j+1jkð ÞTF ei k+ j+1jkð Þð Þ of
the j+1th critic network is required for updating the
weight of the jth actor network. Therefore, (36) can be
employed to update the jth actor network for
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8j 2 0,Np � 2
� 	

. When j=Np � 1, the following
expression is obtained from (43):

ll
i ei k+ j+1jkð Þð Þ=2Piei k+ j+1jkð Þ

When j=Np � 1, replacing Wc, l k+ j+1jkð ÞTF

(ei(k+ j+1jk)) in (36) with 2Piei k+ j+1jkð Þ yields
the weight update rule (37) for the actor network at
Np � 1.

By differentiating ei k+ jjkð Þ on the right side of
(29), the following expression is obtained:

l�i (ei k+ jjkð Þ)

=
∂ ri ei k+ jjkð Þ, u�i k+ jjkð Þ
� �� �

∂ei k+ jjkð Þ

� �

+
∂ J�i ei k+ j+1jkð Þð Þ
� �

∂ei k+ jjkð Þ

� �

=
∂ri ei k+ jjkð Þ, u�i k+ jjkð Þ
� �

∂ei k+ jjkð Þ

+
∂u�i k+ jjkð Þ
∂ei k+ jjkð Þ

� �T ∂ri ei k+ jjkð Þ, u�i k+ jjkð Þ
� �

∂u�i k+ jjkð Þ

+
∂u�i k+ jjkð Þ
∂ei k+ jjkð Þ

� �T
∂ei k+ j+1jkð Þ
∂u�i k+ jjkð Þ

� �T

3
∂J�i ei k+ j+1jkð Þð Þ
∂ei k+ j+1jkð Þ

+
∂ei k+ j+1jkð Þ
∂ei k+ jjkð Þ

� �T
∂J�i ei k+ j+1jkð Þð Þ
∂ei k+ j+1jkð Þ :

ð44Þ

Substituting (41) into (44) gives:

l�i (ei k+ jjkð Þ)

=
∂ri ei k+ jjkð Þ, u�i k+ jjkð Þ
� �

∂ei k+ jjkð Þ

+
∂ei k+ j+1jkð Þ
∂ei k+ jjkð Þ

� �T
∂J�i ei k+ j+1jkð Þð Þ
∂ei k+ j+1jkð Þ

=2Qiei k+ jjkð Þ

+
∂ei k+ j+1jkð Þ
∂ei k+ jjkð Þ

� �T

l�i ei k+ j+1jkð Þð Þ:

ð45Þ

To ensure that the output of the critic network
approximates l�i ei k+ jjkð Þð Þ, (35) is equated to the
right side of (45). Accordingly, the weight update rule
for the jth critic network, where j 2 ½0,Np � 2�, is given
by (38). Similarly, the Np � 1

� �th
critic network updates

its weight according to (39). Moreover, the convergence
of the iterative RLPC algorithm is guaranteed, that is,
as the number of iterations l approaches infinity, uli
converges to u�i , J

l
i to J�i , and ll

i to l�i . #.
Lemma 2 indicates that the output of the actor net-

work converges to the optimal solution as the number
of iterations l tends to infinity. However, due to the

constraints of computational resources, infinite itera-
tions are not feasible. Therefore, a balance between
computational efficiency and performance must be
achieved when selecting the maximum number of itera-
tions and the convergence threshold e. A smaller e
improves performance but increases computational
burden, while a larger e enhances computational effi-
ciency at the expense of performance.

The maximum number of network weight updates
for the critic within each prediction horizon, denoted as
lmax, and for the actor, denoted as pmax. The terms
DWa eð Þ and DWc eð Þ represent the convergence thresh-
olds for the actor and critic network weights, respec-
tively. Therefore, the termination condition of the
iterative RLPC algorithm based on neural networks is
defined as follows:

kWc, l+1 �Wc, lk4DWc eð Þ: ð46Þ

Defining actor(k+ jjk) and critic(k+ jjk) as the jth

actor network and critic network at time k, respectively,
the e-optimal control sequence is as follows:

Ue�
i kð Þ=
ue�
i kjkð Þ, ue�

i k+1jkð Þ, � � � , ue�
i k+Np � 1jk
� �� 


:

ð47Þ

Then, a e-optimal solution to Problem 1 at time
k+1 is:

Ue�
i k+1ð Þ= fue�

i k+1jk+1ð Þ, ue�
i k+2jk+1ð Þ, � � � ,

ue�
i k+Np � 1jk
� �

, 0g:
ð48Þ

Therefore, when solving Problem 1 at each time step,
the weights of each actor and critic network are initia-
lized according to the following equation:

actor k+ jjk+1ð Þ=

actor k+ jjkð Þ,
j 2 ½1,Np � 1�

zeros Ma, 2ð Þ,
j=Np

8>><
>>: ð49Þ

critic k+ jjk+1ð Þ=

critic k+ jjkð Þ,
j 2 ½1,Np � 1�

zeros Mc, 2ð Þ,
j=Np

8>><
>>: ð50Þ

where zeros Ma, 2ð Þ and zeros Mc, 2ð Þ denote the zero
matrices of size Ma32 and Mc32, respectively. The
main procedures of the iterative RLPC algorithm are
summarized in Algorithm 2.

Remark 2: The parameters lmax and pmax are regarded
as constants, independent of the prediction horizon
Np. As a result, the computational burden is primarily
determined by the matrix dimension, which is
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approximately equal to the system output dimension
n. The computational complexity of the iterative
RLPC algorithm is O n2Np

� �
. In contrast, NMPC typi-

cally employs polynomial-time algorithms, such as the
interior point (IP) algorithm, resulting in a complexity
of O n3:5N2

p

� �
.48 Therefore, the proposed iterative

RLPC algorithm demonstrates a significant advantage
in computational efficiency over NMPC.

Remark 3: A terminal equality constraint, added to the
cost function as a soft constraint, is utilized to ensure
the stability of the proposed algorithm. In Algorithm
2, the e-optimal control sequence is not entirely applied
to vehicles, only its first element is applied. In the pro-
cess of rolling optimization, each network is initialized
into a feasible solution according to (49) and (50).

Remark 4: Unlike static neural network-based model
predictive control algorithms that rely on offline train-
ing, the proposed iterative RLPC algorithm updates its
parameters online, reducing the reliance on large off-
line datasets and improving generalization.

Simulation

This section validates the effectiveness of the proposed
distributed iterative RLPC scheme for vehicle platoons
with coupled lateral-longitudinal dynamics through
MATLAB/Simulink-TruckSim co-simulation. Based
on the technical specifications of the DF SKYLINE
KJ1V commercial vehicle, a high-fidelity dual-axle,
fully loaded vehicle model is developed in TruckSim.
Key dynamic parameters are listed in Tables 2 and 3.
The configuration includes a 270 kW peak power
engine with an AT automatic transmission, and a steer-
ing gear ratio of b=25: 1. Environmental conditions

follow the International Standard Atmosphere (ISA)
model, with air density r=1:225 kg=m3.

Within the iterative RLPC algorithm, the activation
function vectors C eið Þ and F eið Þ for each hidden layer
of actor and critic neural networks are both specified as
Gaussian radial basis functions:

C eið Þ= exp�kei�e
1
i k2k2

; exp�kei�e
2
i k2k2

;
�

� � � ; exp�kei�e
Ma
i
k2k2
�

F eið Þ= exp�kei�e
1
i k2k2

; exp�kei�e
2
i k2k2

;
�

� � � ; exp�kei�e
Mc
i
k2k2
�

ð51Þ

where k=1:1, and the number of center points in each
hidden layer of the actor and critic networks is set to
Ma =Mc =5. The terms e1i ; e

2
i ; � � � ; eMa

i

� �
and

e1i ; e
2
i ; � � � ; eMc

i

� �
denote the center points in the hidden

layers of the actor and critic networks, respectively.
Each center point is a four-dimensional vector match-
ing the input dimensions (velocity error, longitudinal
position error, lateral position error, and heading angle
error), with components randomly sampled from
½�3, 3�, ½�3, 3�, ½�1, 1�, and ½�0:1, 0:1�, respectively.
The function G �ð Þ denotes the hyperbolic tangent func-
tion, that is,

tanh xð Þ= ex � e�x

ex + e�x
: ð52Þ

The initial weights for each actor network and critic
neural network, denoted W0

a, 0 and Wc, 0, are randomly
selected from the range �0:5, 0:5½ �. The maximum num-
ber of iterations is set to lmax=4 and pmax=4 in Case
1, and lmax=8 and pmax=8 in Case 2. The weight

Algorithm 2. Iterative RLPC algorithm based on neural networks

1: Input: The maximum iteration numbers lmax and pmax; the weight convergence thresholds DWa eð Þ and DWc eð Þ; the initial
states of the ith vehicle.

2: Output: e-optimal control input ue�
i kjkð Þ.

3: Initialization: Based on equations (49) and (50), initialize the weight matrices for the networks actor(kjk),
actor(k + 1jk), � � �, actor(k + Np � 1jk), critic(kjk), critic(k + 1jk), � � �, critic(k + Np � 1jk). Set l = 0.

4: repeat
5: for j = 0, 1, � � � , Np � 1 do
6: p = 0;
7: repeat
8: Calculate ul

i ei k + jjkð Þð Þ using formula (34);
9: Calculate the next time step’s ei k + j + 1jkð Þ using (19);

10: Update the weights of the actor neural network using formulas (36) and (37);
11: Set p = p + 1;
12: until p = pmax or kWp + 1

al k + jjkð Þ �W
p
al k + jjkð Þk4DWa eð Þ;

13: Calculate ul
i ei k + jjkð Þð Þ using formula (34);

14: Calculate the next time step’s ei k + j + 1jkð Þ using (19);
15: Update the weights of the critic neural network using formulas (38) and (39);
16: end for
17: l = l + 1;
18: until l = lmax or kWc, l k + jjkð Þ �Wc, l�1 k + jjkð Þk4DWc eð Þ, 8j 2 0, Np � 1

� 	
.

19: Calculate the output of the actor network actor(kjk) using formula (34), which corresponds to the e-optimal control input
ue�

i kjkð Þ. Apply ue�
i kjkð Þ to the ith vehicle, then set k = k + 1,update Problem 1, and return to the initialization step for re-solving.
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convergence threshold is DWa eð Þ=DWc eð Þ=10�2.
Other controller parameters are shown in Table 4.

Case 1: Iterative RLPC algorithm (Np=3)

At the initial time, the positions of the vehicles are given
in Table 5. The road adhesion coefficient is set to 0.85.
The leading vehicle begins with an initial velocity of
20 m=s, maintaining a constant velocity, then decelerat-
ing to 15 m=s, and finally sustaining a constant velocity.
All following vehicles are initialized at 21 m=s, with
zero lateral displacement and heading angle errors. The
vehicle platoon travels along a straight road, enters a
curve, and then returns to a straight road. The maxi-
mum curvature of the road is 0:01, with the curvature
profile shown in Figure 8.

In Figure 9(a) to (c), the longitudinal velocity, posi-
tion, and trajectory of the vehicle platoon are shown.
In Figure 10(a) to (c), the longitudinal position error,
heading angle error, and lateral position error of the
following vehicles are shown.

(1) Longitudinal tracking: In Figure 9(a), the simula-
tion results demonstrate that following vehicles in
the platoon quickly track the leading vehicle’s
velocity and maintain consistency. During curved
driving, longitudinal velocity is influenced by lat-
eral velocity due to coupled lateral and longitudi-
nal dynamics. As vehicles enter the curve at
different times, velocity disturbances propagate
through the platoon. This requires following vehi-
cles to simultaneously handle both their own
coupled dynamics and incoming disturbances,
leading to bounded fluctuations in longitudinal
velocity. Figure 10(a) confirms that the proposed
iterative RLPC algorithm maintains the expected
inter-vehicle spacing, with the longitudinal posi-
tion errors of following vehicles asymptotically
converging to zero. Notably, during curved driv-
ing, coupled dynamics and disturbance propaga-
tion cause bounded fluctuations in inter-vehicle
spacing around the desired value.

Table 2. Parameters of the ith vehicle.

Parameter Value Parameter Value

mi 18000 kg Izi 130421:8 kg �m2

ai 3:5 m bi 1:5 m
Jfi 24 kg �m2 Jfi 48 kg �m2

Re 0:51 m

Table 3. Parameters of the Magic Formula.

Tire force B C D E

Fxf
i 8:434 1:813 21370 0:6593

Fxr
i 8:434 1:813 42020 0:6593

F
yf
i 5:228 2:42 21430 0:9869

F
yr
i 5:228 2:42 42140 0:9869

Table 4. Parameters of the controller.

Parameter Value

Sampling time Ts 0:01 s
Weight matrix Qi 1053diag 2, 70, 40, 40ð Þ
Weight matrix Ri diag 0:06, 33106

� �
Td

i, min, Td
i, max �10000, 10000 N � mð Þ

di, min, di, max �0:1, 0:1 radð Þ
Fixed spacing d0 11 m

Figure 8. The road curvature: (a) Case 1 and (b) Case 2.

Table 5. Initial vehicle position information.

Vehicle number Initial position

Leading vehicle 64, 0ð Þ
Following vehicle 1 47, 0ð Þ
Following vehicle 2 30, 0ð Þ
Following vehicle 3 13, 0ð Þ

Yu et al. 13



(2) Safety and trajectory consistency: In Figure 9(b)
and (c), it is shown that, under the proposed con-
troller, the vehicles’ trajectories remain consistent
and no collisions occur within the platoon.

According to the ‘‘Technical Standard of Highway
Engineering,’’ the width of a highway lane is 3:75 m
and that of the emergency lane is 3:5 m. With truck
widths ranging from 2 to 2:4 m, the maximum allow-
able lateral position error is 0:675 m to avoid crossing
lane boundaries. As shown in Figure 10(b) and (c), the
heading angle error and lateral position error of the fol-
lowing vehicles remain zero when the platoon is on a
straight road. On curved roads, these errors change but
remain within the allowable range, confirming that the
proposed controller ensures the safety of the vehicle
platoon.

In Figure 11(a) and (b), it is indicated that the torque
and front wheel steering angle of the following vehicles

Figure 9. Iterative RLPC with Np = 3: (a) longitudinal velocity, (b) longitudinal position, and (c) trajectory.

Figure 10. Iterative RLPC with Np = 3: (a) longitudinal position error, (b) heading angle error, and (c) lateral position error.

Table 6. Comparison of computational time for the iterative
RLPC algorithm.

Computational time Vehicle 1 Vehicle 2 Vehicle 3

Average 0:0041 s 0:0039 s 0:0039 s
Maximum 0:0064 s 0:0059 s 0:0059 s

Figure 11. Iterative RLPC with Np = 3: (a) torque, (b) front wheel steering angle, and (c) computational time.
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in the platoon satisfy the actuator constraints. Figure
11(c) presents the computational time of the following
vehicles under the iterative RLPC algorithm. Table 6
provides both the average and maximum computa-
tional times for each following vehicle, all of which are
below the 0:01-s sampling threshold.

Case 2: Comparison of iterative RLPC and NMPC
algorithms (Np=7)

According to the ‘‘Technical Standard of Highway
Engineering,’’ the corresponding relationship between
velocity and road curvature is shown in Table 7.

In Figures 12 to 15, a comparative analysis of the
simulation results for the coupled controller under two
different algorithms is presented. In Figures 12 and 14,
the simulation results based on the iterative RLPC
algorithm are shown, and in Figures 13 and 15, the
simulation results obtained by utilizing the conven-
tional NMPC algorithm are depicted.

Table 7. The design velocity and the corresponding minimum
radius of curvature for highways.

Design velocity (km=h) 100 80 60
Minimum radius of curvature (m) 700 400 200

Figure 12. Iterative RLPC with Np = 7: (a) longitudinal velocity, (b) longitudinal position, and (c) trajectory.

Figure 13. NMPC with Np = 7: (a) longitudinal velocity, (b) longitudinal position, and (c) trajectory.

Figure 14. Iterative RLPC with Np = 7: (a) longitudinal position error, (b) heading angle error, and (c) lateral position error.
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As shown in subfigure (a) of Figures 12 to 15, the
iterative RLPC algorithm demonstrates superior per-
formance compared to the NMPC algorithm in both
longitudinal velocity tracking and inter-vehicle spacing
maintenance, despite oscillations observed in both algo-
rithms due to coupled dynamics and disturbance pro-
pagation. Subfigures (b) and (c) of Figures 12 and 13

further confirm that both algorithms effectively prevent
collisions within the platoon. Moreover, subfigures (b)
and (c) of Figures 14 and 15 indicate that the iterative
RLPC algorithm achieves higher lateral tracking accu-
racy, with a maximum lateral error of only 0:07 m, well
below the limit specified in the ‘‘Technical Standard of
Highway Engineering.’’

Figure 15. NMPC with Np = 7: (a) longitudinal position error, (b) heading angle error, and (c) lateral position error.

Figure 16. Iterative RLPC with Np = 7: (a) torque and (b) front wheel steering angle.

Figure 17. Comparison of computational time with Np = 7: (a) iterative RLPC and (b) NMPC.
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As shown in Figure 16, the iterative RLPC algo-
rithm ensures that the torque and front wheel steering
angle of the following vehicles in the platoon satisfy the
actuator constraints. As shown in Figure 17 and Table
8, the RLPC algorithm outperforms the NMPC algo-
rithm in both average and maximum computational
time. Notably, the NMPC algorithm, solved via
MATLAB’s fmincon, fails to find feasible solutions
within the prescribed 0:01-s sampling time, whereas the
iterative RLPC algorithm consistently obtains feasible
solutions within this time frame.

In summary, the proposed iterative RLPC algorithm
not only reduces the computational burden compared
to the conventional NMPC algorithm, but also exhibits
superior tracking performance.

Conclusion

A coordinated control architecture was proposed for
high-speed, fully loaded vehicle platoons, integrating
longitudinal tracking with lateral lane-keeping. A five-
degree-of-freedom vehicle dynamics model, capturing
coupled longitudinal-lateral characteristics and tire
nonlinearities, was incorporated with a lane-keeping
model to form an integrated platoon model.
Subsequently, a synchronous distributed model predic-
tive control strategy was developed, using an iterative
RLPC algorithm to solve non-convex constrained opti-
mization problems in real time. Co-simulation using
MATLAB/Simulink and TruckSim demonstrated that
the proposed strategy achieved accurate longitudinal
and lateral control with a lower computational burden
compared to conventional NMPC algorithms. Prior to
real-world implementation, the nominal model para-
meters must be calibrated against actual vehicle data.
Future work will focus on the development of light-
weight neural networks to further reduce computa-
tional burden and enhance robustness against model
parameter uncertainties.
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