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Abstract

Addressing the issue of insufficient real-time computational capability of the centralized controller in solving multi-
objective and multi-constraint nonlinear optimization problems for truck platoons, this paper proposes a synchronous
distributed model predictive control strategy based on the Predecessor-Leader-Following communication topology. This
approach transforms the global optimization problem of the platoon into local optimization problems for each truck,
allowing all following trucks to solve their own optimization problems in parallel. Addressing the challenges of behavior
prediction arising from the strong coupling characteristics of truck dynamics, a five-degree-of-freedom nonlinear
dynamics model that captures both lateral and longitudinal coupling is developed to predict truck behavior. Additionally,
a lane-keeping model is formulated to ensure that the longitudinal velocity of the trucks in the platoon matches that of
the lead truck, while keeping the trucks within the designated lane. To reduce computational burden, a distributed itera-
tive reinforcement learning predictive control scheme based on actor-critic networks is introduced. Co-simulation
results using Matlab/Simulink and TruckSim demonstrate that the proposed strategy ensures both longitudinal velocity
tracking and lateral lane-keeping performance, while providing better computational efficiency than conventional non-
linear model predictive control algorithms.
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integrator model, or third-order model.'* * However,
these models ignore the dynamic characteristics of vehi-
cle systems, which makes them unsuitable under com-
plex driving conditions. A nonlinear longitudinal
dynamics model incorporating engine dynamics, rolling
resistance, and aerodynamic drag is proposed.'>'® This
model captures the vehicle’s longitudinal dynamics
more accurately. Nevertheless, these models primarily

Introduction

Throughout the last decades, the rapid and widespread
adoption of vehicles raises significant concerns about
energy security and traffic issues."? According to the
National Highway Traffic Safety Administration,
about 84% of traffic accidents are attributed to human
factors.> The technology of autonomous vehicle pla-
toons has the potential to significantly reduce the risk
of accidents caused by driver fatigue or error.*”’

Furthermore, the vehicle platoons can significantly
reduce air resistance between vehicles. This reduces
exhaust emissions and fuel consumption, while increas-
ing road throughput.® '°

The accuracy of the nominal model in representing
vehicle dynamic characteristics significantly affects
vehicle handling stability under high-speed condi-
tions.'! In existing studies on vehicle platoon modeling,
vehicles are often simplified as linear point-mass mod-
els, such as the single integrator model, double
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focus on longitudinal dynamics and fail to represent
vehicle lateral dynamics in scenarios such as cornering
or lane changes, and are therefore only applicable to
vehicle platoons traveling on straight roads. For pla-
toons traveling on curved roads, it is necessary to
account for lateral dynamics.'” A nonlinear bicycle
model is employed to describe lateral dynamics, and a
predictive controller is designed to ensure both longitu-
dinal tracking performance and lateral stability.'®
Similarly, a lateral controller based on a lane-keeping
model is developed to ensure that vehicles in the pla-
toon remain within the designated lane.'” However,
these lateral models typically assume constant longitu-
dinal velocity and focus only on lateral and yaw
motions, neglecting the influence of longitudinal
dynamics. In practice, coupling between longitudinal
and lateral motions during cornering exists, and ignor-
ing this coupling degrades the performance of pla-
toon.” Moreover, compared with conventional
passenger vehicles, trucks have greater mass, wheel-
base, turning radius, and moment of inertia.?! Under
conditions involving high lateral/longitudinal accelera-
tion or low road adhesion coefficients, the coupling
effect and tire nonlinearities become more pronounced.
Consequently, the development of a unified model that
accurately characterizes the coupling between lateral
and longitudinal dynamics, incorporates the nonlinear
behavior of tires, and comprehensively reflects both
longitudinal tracking accuracy and lateral stability is of
critical importance.

Control of vehicle platoon is classified into centra-
lized and distributed control. The centralized approach
extends traditional single-vehicle control strategies,
using a central unit to coordinate all vehicles’ beha-
viors. In contrast, distributed control eliminates centra-
lized coordination, with each vehicle employing its own
controller for autonomous decision-making. This
approach offers greater reliability, adaptability, and
robustness, especially in scenarios with restricted com-
munication range and large platoon sizes. As a result,
distributed control has become the predominant meth-
odology in vehicle platoon systems. A longitudinal dis-
tributed control strategy for connected automated
vehicles (CAVs) under communication cyberattacks is
proposed.?? A distributed sliding mode control scheme
is developed to ensure coordinated behavior within
vehicle platoons.”* A distributed model reference adap-
tive control strategy is designed to tackle inherent
uncertainties in heterogeneous multi-agent systems.>*
Distributed model predictive control (DMPC), capable
of handling multi-input multi-output systems and
multi-objective constrained optimization problems, has
attracted considerable attention in recent years and has
been successfully applied to control of vehicle pla-
toons.?> 27 A distributed model predictive control algo-
rithm is proposed to ensure y-gain stability of vehicle
platoons.”® A distributed model predictive controller
for nonlinear vehicle platoons is developed to guaran-
tee string stability.”” A distributed model predictive

control scheme is formulated to ensure local stability
while satisfying multi-criteria string stability require-
ments.>® Current DMPC implementations for vehicle
platoons are still restricted by computational ineffi-
ciency and suboptimality in solving constrained optimi-
zation problems. These challenges become more severe
when considering nonlinear vehicle dynamics with
coupled longitudinal and lateral characteristics. Under
such conditions, the DMPC algorithm may fail to com-
pute feasible solutions within the required sampling
intervals. Therefore, efficiently solving optimization
problems in DMPC for vehicle platoons while account-
ing for the coupling between longitudinal and lateral
dynamics remains a critical technical bottleneck in
intelligent transportation systems.

Reinforcement learning (RL), as an advanced policy
optimization methodology, has shown considerable
promise in complex system control and has been
widely adopted in intelligent transportation systems.
Particularly, multi-agent reinforcement learning (MARL)
has demonstrated effective multi-vehicle coordination cap-
abilities in control of vehicle platoons.”’ A MARL-based
cooperative adaptive cruise control (CACC) strategy is
proposed to optimize platoon stability and energy effi-
ciency for CAVs.*> A distributed control architecture is
proposed, where a deep reinforcement learning agent opti-
mizes vehicle platoon acceleration on curved roads
through iterative interaction with the lateral controller.®
A guided deep deterministic policy gradient (DDPG)
framework is proposed to enhance the convergence effi-
ciency of RL-based controllers.** CACC is reformulated
as a decentralized MARL task, eliminating the need for
centralized controllers during both training and deploy-
ment to improve scalability and robustness.*® However,
the aforementioned MARL-based approaches have these
limitations: (1) reliance on third-order integrator kinematic
models, capturing only position, velocity, and acceleration
relationships, ignoring vehicle dynamics coupling and tire
nonlinearities; (2) lack of constraint-handling mechanisms
inherent to DMPC frameworks.

Reinforcement learning has demonstrated superior
exploration capabilities in high-dimensional solution
spaces, making it a powerful tool for tackling non-
convex optimization problems.”” The RL-DMPC inte-
grated framework combines the advantage of RL in sol-
ving non-convex optimization problems with the
strength of DMPC in constraint handling.*® Current
research has made preliminary attempts at integration: a
distributed algorithm that integrates deep reinforcement
learning with DMPC is proposed, where deep reinforce-
ment learning is utilized for reference trajectory genera-
tion, and DMPC is employed to track the trajectories
while ensuring collision avoidance among vehicles.*
However, this integration does not effectively address
the computational inefficiency inherent in DMPC. A
distributed learning-based predictive control framework
is proposed to generate DMPC’s closed-loop control
policies for multi-robot coordination.** Nevertheless,
their reliance on fixed communication topologies
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Figure |. Predecessor-Leader-Following topology.

conflicts with the dynamic networking needs of vehicle
platoons. To the best of the authors’ knowledge, no sys-
tematic study has explored the co-design of RL and
DMPC for vehicle platoon controls.

In this paper, a nonlinear model of vehicle platoon is
proposed, which combines the five-degree-of-freedom
(5-DOF) dynamic model with the lane-keeping model.
Then, a distributed model predictive control strategy
for vehicle platoons is introduced. Furthermore, an
iterative reinforcement learning predictive control
(RLPC) algorithm is suggested to effectively handle the
constrained optimization problem for each following
vehicle. The effectiveness of these algorithms is verified
by co-simulation using MATLAB/Simulink and
TruckSim. The primary contributions of this paper
include:

(1) A 5-DOF nonlinear dynamics model and a lane-
keeping model have been employed to construct a
vehicle platoon model that effectively captures the
coupled lateral and longitudinal characteristics of
the vehicles, as well as the nonlinear behavior of
tires;

(2) A distributed model predictive controller for vehi-
cle platoons considering lateral and longitudinal
coupling is proposed, which achieves cooperative
of both lateral and longitudinal coordinated con-
trol of vehicle platoons;

(3) This paper proposes an iterative RLPC algorithm
based on the actor-critic neural network. The
algorithm is designed to generate an explicit
closed-loop DMPC policy capable of handling
non-convex constrained optimization problems
for platoon vehicles in real time. Co-simulation
experiments show that the developed controller
successfully achieves the lateral and longitudinal
control objectives of the vehicle platoon. In com-
parison to the conventional nonlinear model pre-
dictive control (NMPC) algorithm, the introduced
iterative RLPC algorithm has been demonstrated
to exhibit superior computational efficiency.

The rest of this paper is structured as follows:
Section “Problem setup” provides a detailed problem
description, covering the communication topology, the
vehicle platoon model, and the objectives of vehicle
platoon control. Section “Distributed model predictive

Table I. Symbols for the vehicle platoon system.

Symbol Description

Xi Position of the it" vehicle

v Longitudinal velocity of the i vehicle

v/ Lateral velocity of the i vehicle

@ The yaw rate of the i vehicle

w; The front wheel angular velocity of the i vehicle
wi The rear wheel angular velocity of the i vehicle
I The inertia moment around the z-axis

a; The distances from front axle to mass center

b; The distances from rear axle to mass center

Re The rolling radius of the wheel

control strategy” describes a distributed model predic-
tive controller tailored for the vehicle platoon. Section
“Iterative reinforcement learning predictive control
scheme” introduces the iterative RLPC algorithm.
Section “Simulation” shows results of co-simulation
experiments using Matlab/Simulink and TruckSim.
The conclusion is drawn in Section “Conclusion.”

Problem setup

In the vehicle platoon, the leading vehicle is numbered
0, while the following vehicles are numbered 1---N.
The leading vehicle, operated by a human driver, is
capable of handling emergencies or unexpected events,
which contributes to the overall safety of the platoon.
This paper investigates the cooperative control of vehi-
cle platoons in highway scenarios and employs a
Predecessor-Leader-Following (PLF) communication
topology, as illustrated in Figure 1, where each follow-
ing vehicle communicates with its preceding vehicle in
the platoon. This topology demonstrates low communi-
cation latency, making it well-suited for highway envir-
onments. The required symbols for the vehicle platoon
system are presented in Table 1.

Vehicle dynamics

In this paper, a 5-DOF vehicle dynamics model
(Figure 2) is adopted to represent a two-axle truck,
incorporating additional degrees of freedom associ-
ated with wheel rotation.*!
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Figure 2. 5-DOF vehicle dynamics model.

The classical 3-DOF dynamics model considers the
vehicle’s motion in the longitudinal, lateral, and yaw
directions, which is expressed as follows:

my — mvl ¢, = Flcosd; — F/sins; + FY
miv) — myrg; = Flsing; + Flcoss; + F' (1)
E¢; = (F'siné; + F/cos8,)a; — F'b;

1

where v¥ and v! denote the longitudinal and lateral
velocities of the i vehicle, ¢; denotes its yaw rate, m;
denotes its mass, Fff and FY" denote the longitudinal
forces of the front and rear tires, 7/ and F/" denote the
lateral forces of the front and rear tires, a; and b; denote
the distances from the center of mass to the front and
rear axles, 8; denotes the front wheel steering angle, and
I denotes the moment of inertia of the i’ vehicle.

The forces on the wheel are shown in Figure 3, and

the corresponding dynamic equations are as follows:

f_ T{-RFY
. 7?’—113315“-.‘/‘ (2)
i —

i

where w/ and w! denote the angular velocities of the
front and rear wheels of the i vehicle, J{ and J; denote
the moments of inertia of the front and rear wheels, R,
denotes the effective rolling radius of the wheel, and 7¢
denotes the driving/braking torque.

Combing the classical 3-DOF dynamics model with

(2), then a 5-DOF dynamics model is obtained:

R ). FYcos8;—Fsins; + F"
X — ) i ’ i ’ i
Vi Vz‘ Qi + m;
.y . F7sins; + Flcoss; + F"
J— X i 1 i i
V= =it o :
.o (F;stiné, + F‘:/cosé,»)a,-—l";"'b,» 3
®; = E ( )
. TY—R,FY
‘/‘){\ = 1 / 1
4
. TY—R F¥"
Y A— €
W= L.

i

The state variables of this model include the longitu-
dinal velocity, lateral velocity, yaw rate, front wheel

Figure 3. Forces on the wheel.

angular velocity, and rear wheel angular velocity of the
vehicle. The control inputs are the front wheel steering
angle and driving/braking torque.

As a crucial component of vehicle dynamics, an
accurate tire model plays a significant role in controller
design. In this paper, the Magic Formula is employed
to calculate the tire force,** which is:

FY = Dsin (Carctan (Bk; — E(Bk;

—arctan Bk;))) 4
F! = Dsin (Carctan (Ba; — E(Ba; (4)
—arctan Ba;)))

where B, C, D, and E denote the stiffness, shape, peak,
and curvature factors, respectively. The terms k; and «;
denote the slip ratio and slip angle of the tire, and F} and
F] denote the longitudinal and lateral forces of the tire.

The slip ratio of front and rear wheel are defined as
follows:

. S
k{ _ w{.-RUfti

(5)
_ Wi R —v"

i
i

The slip angle of front and rear wheel are defined as
follows:

o = sgn (v',i\f ) -arctan (f—:) ©

o

r— Xr Vi
af = sgn (V") - arctan (‘:—,)

where vff and v;" denote the longitudinal velocities of
the front and rear wheels in the tire coordinate sys-
tem, v/ and /" denote the lateral velocities of the
front and rear wheels in the tire coordinate system.
Furthermore,
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Figure 4. Constant inter-vehicle spacing.

vy = vFlcos (8,) + v} 'sin (5;)

V= —y5sin (8;) + v)"'cos (8))

Xro— X2 (7)
vy =y

=

where v*! and v*? denote the longitudinal velocities of
the front and rear wheels in the vehicle coordinate sys-
tem, v/"' and v/'? denote the lateral velocities of the
front and rear wheels in the vehicle coordinate system,
and

v o=yt
v, 1 = ', n. .
AR ®
Vit =
W= = b
The lane-keeping model

The longitudinal position error of the i

platoon is defined as follows:

65? = Xi— (X,;] - ddes) (9)

vehicle in the

where x; and x;_; denote the longitudinal positions
of the i vehicle and its predecessor, respectively.
This paper adopts the constant inter-vehicle spacing
(Figure 4) policy,43 that is, dgs = dp.

As shown in Figure 5, e} denotes the lateral position
error between the vehicle and the center line of the lane,
and e! denotes the heading angle error, which is calcu-
lated as:

e;/) = (pi, des — P (10)

where ¢; and ¢; 4, denote the heading angle of the vehi-
cle and the tangential angle of the lane, respectively.

Therefore, the relationships for Vehicle-to-Road and
Vehicle-to-Vehicle are as follows**:

é? =V — v
& = viet <! ~ Loy (1)
e;ﬂ = qbi, des — Qb[

where ¢; 4, = v{/R denotes the desired yaw rate of the
i"" vehicle, L denotes the look-ahead distance, and R

Figure 5. Lane-keeping model.

denotes the radius of curvature at the look-ahead point
on the road.

Assumption 1: In this study, the following assumptions
are made regarding the communication system: (1)
vehicles in the platoon maintain clock synchronization;
(2) inter-vehicle communication is ideal, without chan-
nel fading, packet loss, or communication delay; (3) all
sensor measurements are noise-free.

Assumption 2: The leading vehicle, operated by a
human driver, has its longitudinal position and velocity
known, and the road curvature is known.

Control objective of vehicle platoons

Each following vehicle in the platoon, operating within
a distributed control framework, collects state data via
on-board sensors and V2V communication. The control
objectives of vehicle platoons are as follows:

(1) All vehicles in the platoon maintain the same
velocity as the leading vehicle while keeping a safe
distance to the front and rear vehicles.

{ lim [[vi (7) = v5(2)[| = 0

. 12
fim 1 (1) = 0(0) = df = 0. (1)

(2) The trajectories of vehicles in the platoon should
align with the prescribed lane, that is, the lateral
position error and heading angle error of the i
vehicle relative to the lane should be minimized as
much as possible.

lim [/ (1) = 0
lim 2 (1) = 0. (13)

Distributed model predictive control
strategy

This section proposes a distributed model predictive
controller that accounts for the coupling between
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longitudinal and lateral dynamics. The schematic dia- where x; € R®, u; € R?,
gram of the proposed control architecture is shown in
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Integrated vehicle platoon model

By integrating the 5-DOF dynamic model (3) with the
lane-keeping model (11), an integrated vehicle platoon
model is derived as follows:

Ff/cos SifF,‘f/sin 5 + FY

R .
Vi T Vfgol + m;
.y . FYsiné; + F/coss; + F"
_ X i i i it
‘% = Vi + mj
. (F.'fsinBl + Flfcosﬁi)a,-fF}."'b,»
— 1 1 1
b E
. TY—R,FY
] = T (14)
i
. TY—R.F¥"
Y A— €
Wi 1 J:: 1
Do X X
& = . Vi1,
Do % ) .
eg)fviei — vl — L¢;
€ = (pi, des P

The state of the vehicle platoon is defined as follows:

xi=[ve v g whowloel el e?]T' (15)

1 1 1 1

The output of the vehicle platoon is defined as
follows:

(16)
The control inputs include the driving/braking tor-
que and the front wheel steering angle, as follows:

w=[1 8] (17)

Therefore, system (14) can be rewritten as follows:

X = fi(xi,u;)
{ i = Cix; (18)

With a sampling time of T, system (18) is discretized
as:

{ xi(k + 1) = fi(xi(k), wi(k))

yi(k) = Cix;(k). (19)

Distributed model predictive controller with coupled
longitudinal and lateral dynamics

Based on the integrated vehicle platoon model, a coop-
erative controller is designed. In the distributed control
framework, each following vehicle simultaneously
solves its own local optimization problem.

The desired outputs of system (19) are denoted as
follows:

Vi, des (k) =

WalK)  Luk) elak) )’ 20

X
where vi ¢

the i vehicle, with v}, =

i,des® ~i,des
and e, denote the desired longitudinal position error,

lateral position error, and yaw angle error, where
— Vv — (] —
ef,d@s 0’ ei, des 0’ and ei, des 0.

The tracking error of the i vehicle is defined as
follows:

ei(k) = yi(k) = yi,des(k).

denotes the desired longitudinal velocity of
vy. The terms ¢, e

The control sequence over the prediction horizon N,
is defined as follows:

Ui(klk) =

[T () w7+ 1R, - (k + Np—11%)] 7 GV
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At time k, the optimization problem to be solved by
the i vehicle is formulated as follows:

Problem 1
minr&zfze Ji(ei(klk), Ui(k|k)) (22a)
s.t.
. . . (22b)
xi(k +j + 11k) = fi(xi(k + jlk), ui(k + jlk))
yilk + jlk) = Cixi(k + jlk) (22¢)
yilklk) = yi(k) (22d)
T;{min < Tf/(k + ]lk) < T:‘{max (226)
61’, min <81(k + /|k) gsz’, max (22f)
e,»(k + Np|k) =0 (22g)
where
Jf(ei(k)l, Ui(k))
N, —
L . . 23
= 5 (et 00, + ath + 1il,)
J=

The terms Q; and R; are symmetric positive definite
weight matrices. The terms 77 . and 77 . denote the
minimum and maximum torques, where Tgmin = —
Tﬁfmax, and 6; min and 8; max denote the minimum and
maximum front wheel steering angles, with 8; min =
_ai,max-

The terminal equality constraint (22g) ensures con-
vergence of the predicted state to the equilibrium
point at the end of the control horizon. In the absence
of external disturbances and modeling uncertainties,
the control inputs beyond the horizon can be set to
zero, maintaining the system remains at the equili-
brium point.*>*® The cost function (23) is defined as

follows:
Ny—1
Ji= 3 etk + jlig, + llui(k + jlk)|%,)
! (24)
= _ZO(IIe,-(k + NG, + ik + jlk)IZ,)
J=

~.

The cost function in Problem 1 is defined over an infi-
nite horizon. If a solution exists, denoted by U;(kl|k),
the corresponding predictive control law at time step k
is defined as follows:

Kk(xi(k)) :==[Lx20 -+ 0 ]2X2N,,U7(k|k)> (25)

The system under control can be characterized as
follows:

xi(k + 1) = fi(xi(k), k(x;(k))), k=0
yi(k) = Cixi(k)

Lemma 1: Suppose that*®

(a) At k=0, there exists a feasible solution to the
constrained optimization Problem 1.
(b) The output y; exhibits zero-state observability.

For nominal systems that exclude external disturbances
and model uncertainties, the following holds:

(1) For any k>0, Problem 1, updated using the state
measurement x;(k), admits a solution.

(2) The closed-loop system (26), composed of (25), is
nominally asymptotically stable.

The terminal equality constraint increases computa-
tional complexity and may render the optimization
problem infeasible. To address this, constraint (22g) is
reformulated as a soft constraint, which ensuring
both computational efficiency and the feasibility of
Problem 1, while driving the terminal state to converge
to the equilibrium point, thereby guaranteeing the
asymptotic stability of the closed-loop system.*>*¢
Meanwhile, the cost function of Problem 1 is modified
as follows:

Ji(ei(k), Ui(k))

Ny—1

= e; i 2 U i 2
5 (leite+ 70, + etk + 81,

=
+ ||e,-(k + NF)”%’,

(27)

where P; denotes the terminal penalty matrix. In this
paper, based on empirical data, the terminal penalty
matrix is selected as P; = 100;.

Iterative reinforcement learning
predictive control scheme

The distributed control framework decomposes the glo-
bal optimization problem into a series of local optimi-
zation problems. However, for nonlinear systems
described by (19), solving the non-convex problem at
each sampling instant is generally time-consuming. As
the system state and control dimensions increase, the
computational burden grows significantly. An iterative
RLPC algorithm is proposed in this section to effi-
ciently solve the non-convex problem, as shown in
Figure 7.
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Figure 7. Diagram of the iterative RLPC algorithm.

Finite-horizon iterative RLPC algorithm

The iterative RLPC algorithm integrates policy itera-
tion with the actor-critic architecture in RL, thereby
replacing conventional numerical solvers (e.g. IP meth-
ods). At each sampling time, the algorithm solves a con-
strained optimization problem to obtain an optimal or
sub-optimal control sequence over the prediction hori-
zon. Specifically, within the prediction horizon
J €[0,N, — 1], N, actor networks approximate the opti-
mal control sequence Uj(e;(k + jlk)), while N, critic
networks approximate the derivative A} (e;(k + jlk)) of
the optimal cost function J!(e;(k + j|k)) with respect to
the error e;(k + jlk).
The stage cost is defined as follows:

ri(eilk + jlk),ui(k + j1k) = llei(k + jlk)I[g,

. (28)
ik + RN, -

Suppose that there exists a optimal control
policy in Problem 1. According to the Bellman’s
Optimality Principle, the optimal cost function of the
system satisfies the following discrete-time HIJB
equation®”*%:

Ji (ei(k +J'|1(<))(k: ) e + 1)
. r(ei(k + jlk), ui(k + j
p‘?ﬁf@( + Ji(ei(k +j+ 1]k)) )

T (el + NK)) = sk + N,

The optimal control u} (e;(k + jlk)) satisfies:

ui (ei(k + jlk)) =
argmin (30)
10" il < 1

(r,(e,-( + jlk), ui(k +j|k>>>
+ Ji(ei(k +j + 1]k)) ’

where U = diag(Tf’ max 01, max) denotes the control input
constraint matrix. It is worth noting that the constraint

|U u|| < 1 is equivalent to

¢
i 6]

B
T;{ max 8i> max

max

<l,

which indicates that the control inputs satisfy the given
constraints.

In each prediction horizon, due to the high compu-
tational burden of accurately solving the nonlinear
HIB equation (29), a finite-horizon iterative RLPC
algorithm is developed to approximate an optimal or
suboptimal control policy. Within the prediction hori-
zon [k,k + N, — 1], the finite-horizon iterative RLPC
algorithm is initialized with a cost function
S(ei(k + jlk)) =0. Then, for [/=0,1,--- and
J € [0, N, — 1], the control input u!(e;(k + jlk)) is calcu-
lated as follows:

ul(ei(k + jlk)) =
ri(ei(k + jlk), ui(k +./|k))>
Sl ’

ik +j+ 1]k)) o

argmin
107 il <1

The cost function J!* !(e;(k + jlk)) is updated as
follows:
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S Weilk + jlk)) = r(ei(k + jlk), wi(k + jlk))
+ Jiei(k + j + 1]k)),
Jiei(k + Np)) = llei(k + Np)lI3, -

(32)

Theorem 1: Let ! and J! be defined by (31) and (32). If
J(ei(k + jlk)) = 0, then as the number of iterations /
approaches infinity, u! converges to u}, and J' to J;.

Theorem 1 proves the convergence of the iterative
finite-horizon RLPC algorithm under the assumption
of infinite iterations and the initial condition
S (ei(k + jlk)) = 0. However, this assumption is con-
servative in practice, particularly for convex problems
where optimal solutions are typically attainable within
finite iterations.

To reduce the computational burden of on-board
systems while maintaining tracking performance, it is
essential to determine a priori both the maximum
number of iterations and the convergence threshold.
Let the convergence threshold be denoted by &>0.
According to Theorem 1, within the prediction horizon
J €1[0,N, — 1], there exists an iteration number / such
that:

|75 Heilk + k) — Ji(eilk + jik))| <e. (33)

The convergence threshold ¢ quantifies the accepta-
ble deviation between the suboptimal and optimal solu-
tions. When the convergence criterion (33) is satisfied,
the solution u! is considered ¢-optimal, denoted by u®*,
with the corresponding cost J¢*. Instead of seeking the
global optimal solution to the non-convex problem, the
algorithm aims for the e-optimal solution u{* that satis-
fies (33), thereby balancing optimality and computa-
tional efficiency.

The main procedures of the iterative RLPC algo-
rithm is summarized as Algorithm 1.

Algorithm |. Iterative RLPC algorithm

Step |: Initialize: 1=0, j=0, J°(ei(k +j|k)) =0, £>0,
and maximum number of iterations |y ax;

Step 2: Calculate ul(e;(k +jlk)) using (31);

Step 3: Generate the next state e;(k +j+ | |k) using (19);

Step 4: Calculate JI* ' (e;(k +jlk)) using (32);

Step 5: If j=N, — |, return; else, set j=j+ | and go back
to Step 2;

Step 6: If |= Iy or |17 (ei(k +jlk)) — Ji(ei(k +jlk))| < &
vj e [O,NP — I}, return; else set /=/+1,j=0 and
go back to Step 2.

Remark 1: In the iterative RLPC approach, the finite-
horizon iterative RLPC algorithm, as described above,
is used to obtain an e-optimal control policy «}* within
each prediction horizon.

Efficient solving of iterative RLPC algorithm based on
neural networks

To mitigate computational and storage burdens, neural
networks are commonly employed to approximate
value functions and policies in continuous state spaces.
In this section, as an effective and practical realization
of the iterative RLPC scheme, neural networks, in con-
junction with kernel-based basis functions, are inte-
grated into the iterative RLPC algorithm.

In this paper, radial basis function networks are cho-
sen for both the actor and critic networks. The structure
of the actor network is as follows*®:

e+ )
- Ur( 5% !k + ) ek +j|k>>)

m=1

= UF(WGJ(k + j1k) T (e;(k +j|k)))
(34)

where I'(+) is a monotonic odd function and |[I'(-)|]| <1.
The first-order derivatives of the U and I" are bounded.
The term M, denotes the number of center points in
the hidden layer of the actor network, The term
w([f;(k + jlk) € R*> denotes the weight vector between
the m" center point and the output layer of the j* actor
network when the iteration number is /. The term
" (e;(k + jlk)) denotes the activation function of the
m' center point in the hidden layer of actor network,
W.,.i(k + jlk) denotes the weight matrix of the j actor
network.

The structure of the critic network is defined as
follows:

M=

Mei(k + jlk)) = lef,”) (k + jlk) " (e;(k + jlk))

= W (k + jlk) ®(ei(k + jlk))
(35)

where M, is the number of center points of the hidden
layer of critic network, w[gl] (k + jlk) € R* denotes the
weight vector between the m™ center point and the out-
put layer of the j” critic network when the iteration
number is /. The term ¢! (e;(k + j|k)) denotes the acti-
vation function of the m™ center point in the hidden
layer of critic network, W, ;(k + jlk) denotes the weight
matrix of the j' critic network.

In all neural networks, the parameters to be deter-
mined include the center points of the hidden layer and
the weights from the hidden layer to the output layer.
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In this paper, the center points of the hidden layer are
randomly selected within the input variable range and
remain constant. Thus, the parameter to be estimated
is the weight connecting the hidden layer to the output
layer.

In the iterative RLPC algorithm based on neural net-
works, the actor neural network and the critic neural
network respectively perform policy updates and eva-
luations in Algorithm 1 through weight adjustments.*®

(1) weight update of actor network

W (k + jlk)

a,l

= (Wleilk + JR)W(eilk + RN Wleilk + 1K)

T T
_ 1 [ delktj+ 1K)
) ~=1 2Ri \ ul? (ei(k + jlk))
x|r'fo aenr ,
XWe(k +j+ k)
XD (e;(k +j+ 1]k))
Jj€E [0, N, — 2]
(36)
and

Wik + jlk)
-1
= (Wleilk + k)W exlk +k)T) Wlerk + jlK))

T T
A =L de;(k + j + 1]k)
x| T U 2R; 3Llf'p(€i</c + jlk)) 5
X2Pe;(k + j+ 1|k)))

j=N,—1
(37)

where W’;y '(k + jlk) denotes the weight matrix of the

j™ actor network during the /" policy evaluation and

th

p" policy update, W, ,(k + jlk) denotes the weight
matrix of the j# critic network in the /! policy evalua-
tion, uf’p(e,-(k + jlk)) denotes the output of the j* actor
network during the /" policy evaluation and the p™
policy update, I'"'(-) is the inverse function of T'(-).

(2) weight update of critic network

Wc,[+ 1(k +]‘k)
= (D(es(k + jlk)D(ei(k + jlk)T) " Dlei(k + jlk))

o (et i RN
x(20uek + k) + (M)

X W, (k + j+ 1k) ®(e;(k + j+ 1]k)))7,
j€0,N, —2]

and

Wei+ l(k +.i|k)
= (®(eilk + JIRNDLe(k + 1))

stk + i+ N\
X<2Q,~el~(k 4 k) + (Pl i) ) ,
X2Pei(k + j+ 1[k)

Jj=N,—1

ek + 1K)

(39)

where W, + 1(k + jlk) denotes the weight matrix of the
Jj™ critic network in the / + 1/ policy evaluation.

Lemma 2: In the iterative RLPC algorithm based on
neural networks, the weights of the actor networks are
iteratively updated according to (36) and (37), while
the weights of the critic networks are updated according
to (38) and (39). As the number of iterations / approa-
ches infinity, u! converges to uf, J! to Ji, and Al to
)\;‘.47’48 Consequently, the output of the actor network
corresponds to the optimal solution of Problem 1.

Proof: A note that J; is continuously differentiable with
respect to u;. When the cost function is minimized, the
optimal solution u}(k + j|k) should satisfy:

37 (ei(k + jlk))

S S

(40)

The derivative of u} (k + jlk) on the right side of the
first equation in (29) can be obtained as follows:

a(ri(eilke + jlic),ut (e + jlk)) + J: (ei(e + j + 1K)
o (k + Jlk)
_oni(eilk + jlk). up (k + jlk))
ou; (k + jlk)
N (ae,(k i+ 1|/c)> T o (esk +j + 1]K))
aut (k + jlk) de;(k + j + 1]k)

(41)

Substituting (28) into (41) gives:

A T
. Dn deillk +j + 1]k
ui (k + jlk) = —i(hki’w‘)))

XA (ei(k +j + 1]k))

where

_ Wileilk + jlk)

A leilk IR0 = =5 e 70

(43)

Let (34) be equal to the right side of (42), from
which the weight update of the actor network, given by
(36), follows. As observed from (36), the output
ek + j+ 11k)) = We(k +j + 1/k) " ®(ei(k +j + 1|k)) of
the j + 1/ critic network is required for updating the
weight of the j actor network. Therefore, (36) can be
employed to update the ;" actor network for
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Vj€ [0,N,—2]. When j=N,—1, the following
expression is obtained from (43):

ek + j+ 1]k)) = 2Pie;(k + j + 1k)

When j=N,—1, replacing W,/ (k+j+ 1|k)"®
(ei(k + j+ 1]k)) in (36) with 2Pe;(k + j+ 1]k) yields
the weight update rule (37) for the actor network at
N, - 1.

By differentiating e;(k + jlk) on the right side of
(29), the following expression is obtained:

Xjek + jlk)

B (a(r,(e,-(k + 1K), u; (k +Jlk)))>
dei(k + jlk)

A(J:(ei(k +j + 1]k)))

! ( e,k + 1K) )

_ Bri(e,-(k + jlk), u} (k +j|k))
de;(k + jlk)

. <au;f(k + j|k)> T ori(ei(k + jlk), up (k + jlk))
dei(k + jlk) i (k + jlk)
uz (k + jl)\" (dei(k +j + 1/k)\ "

i (ae,-((k+jj’||k>)> ( 3(u?(k+jlk) ))

y oJ; (ei(k +j+ 1]k))
dei(k +j + 1]k)
. (ae,(k it 1k>>TaJ;f<ez~<k 1))

de;(k + jlk) dei(k +j+ llk)
(44)
Substituting (41) into (44) gives:
Ai(ei(k + jlk))
_ dri(eilk + jlk), u; (k + jlk))
dei(k + jlk)
dei(k + j+ 1K)\ " T (ei(k +j + 1]k))
dei(k + jlk) dei(k +j+ 1|k)
= 2Qiei(k +]|k)
dei(k +j + 11\, _
+ (2L T ek 4+ _
(P ) et .+ 1)
(45)

To ensure that the output of the critic network
approximates A;(e;(k + jlk)), (35) is equated to the
right side of (45). Accordingly, the weight update rule
for the j critic network, where j € [0, N, — 2], is given
by (38). Similarly, the (N, — l)lh critic network updates
its weight according to (39). Moreover, the convergence
of the iterative RLPC algorithm is guaranteed, that is,
as the number of iterations / approaches infinity, uf
converges to u?, Ji to J, and Al to A7, #.

Lemma 2 indicates that the output of the actor net-
work converges to the optimal solution as the number
of iterations / tends to infinity. However, due to the

constraints of computational resources, infinite itera-
tions are not feasible. Therefore, a balance between
computational efficiency and performance must be
achieved when selecting the maximum number of itera-
tions and the convergence threshold ¢ A smaller &
improves performance but increases computational
burden, while a larger ¢ enhances computational effi-
ciency at the expense of performance.

The maximum number of network weight updates
for the critic within each prediction horizon, denoted as
Imax, and for the actor, denoted as pp.x. The terms
AW,(¢) and AW,.(e) represent the convergence thresh-
olds for the actor and critic network weights, respec-
tively. Therefore, the termination condition of the
iterative RLPC algorithm based on neural networks is
defined as follows:

||Wc,l+ | Wc,l” <AWC(8)' (46)

Defining actor(k + jlk) and critic(k + j|k) as the j"
actor network and critic network at time k, respectively,
the e-optimal control sequence is as follows:

Uz (k) =
{ug* (k|k),ut (k + 1)k), -+ ,uf*(k + N, — 1]k) }.
(47)

Then, a e-optimal solution to Problem 1 at time
k+ 1lis:

Uk + 1) = {u* (k + 1k + D, (k + 2)k + 1), -,
W (k + N, — 1]k),0}.
(48)

Therefore, when solving Problem 1 at each time step,
the weights of each actor and critic network are initia-
lized according to the following equation:

actor(k + jlk),
je LN, — 1

zeros(M,,2),
J=N,

actor(k +jlk + 1) = (49)

critic(k + jlk),
JEe[LN, —1]
zeros(M.,2),
Jj= Np

critic(k + jlk + 1) = (50)

where zeros(M,,2) and zeros(M.,2) denote the zero
matrices of size M,X2 and M X2, respectively. The
main procedures of the iterative RLPC algorithm are
summarized in Algorithm 2.

Remark 2: The parameters /,,, and p,,, are regarded
as constants, independent of the prediction horizon
N,. As a result, the computational burden is primarily
determined by the matrix dimension, which is



Proc IMechE Part D: | Automobile Engineering 00(0)

Algorithm 2. Iterative RLPC algorithm based on neural networks

I: Input: The maximum iteration numbers Iy, and prax; the weight convergence thresholds AW, (¢) and AW, (¢); the initial

states of the i" vehicle.
2: Output: ¢-optimal control input ué*(k|k).

3: Initialization: Based on equations (49) and (50), initialize the weight matrices for the networks actor(k|k),

actor(k + 1|k), - - -, actor(k + N, — 1]k), critic(k|k), critic(k + I |k),
4: repeat

-+, critic(k + N, — 1]k). Set [=0.

5: forj=0,1,---,N, — | do
6: p=0;
7: repeat
8: Calculate ul(e;(k +jlk)) using formula (34);
9: Calculate the next time step’s e;(k +j+ 1|k) using (19);
10: Update the weights of the actor neural network using formulas (36) and (37);
I1: Setp=p+1;
120 until p=poe or [W5" ! (k+jlk) — WE (k+j{K0]| <AW, ()
13: Calculate ul(ej(k +jk)) using formula (34);
14: Calculate the next time step’s e;(k +j+ | |k) using (19);
15: Update the weights of the critic neural network using formulas (38) and (39);
16: end for
17: I=1+1;

18: until 1= I,y or [|We (k+jlk) —

We i1 (k+jlK)| AW, (&), ) € [0,N, — 1].

19: Calculate the output of the actor network actor(k|k) using formula (34), which corresponds to the e-optimal control input
ut (k|k). Apply u® (k|k) to the it vehicle, then set k =k + I,update Problem I, and return to the initialization step for re-solving.

approximately equal to the system output dimension
n. The computational complexity of the iterative
RLPC algorithm is O(n*N,). In contrast, NMPC typi-
cally employs polynomial-time algorithms, such as the
interior point (IP) algorithm, resulting in a complexity
of O n3‘5N12,P * Therefore, the proposed iterative
RLPC algorithm demonstrates a significant advantage
in computational efficiency over NMPC.

Remark 3: A terminal equality constraint, added to the
cost function as a soft constraint, is utilized to ensure
the stability of the proposed algorithm. In Algorithm
2, the e-optimal control sequence is not entirely applied
to vehicles, only its first element is applied. In the pro-
cess of rolling optimization, each network is initialized
into a feasible solution according to (49) and (50).

Remark 4: Unlike static neural network-based model
predictive control algorithms that rely on offline train-
ing, the proposed iterative RLPC algorithm updates its
parameters online, reducing the reliance on large off-
line datasets and improving generalization.

Simulation

This section validates the effectiveness of the proposed
distributed iterative RLPC scheme for vehicle platoons
with coupled lateral-longitudinal dynamics through
MATLAB/Simulink-TruckSim co-simulation. Based
on the technical specifications of the DF SKYLINE
KJ1V commercial vehicle, a high-fidelity dual-axle,
fully loaded vehicle model is developed in TruckSim.
Key dynamic parameters are listed in Tables 2 and 3.
The configuration includes a 270 kW peak power
engine with an AT automatic transmission, and a steer-
ing gear ratio of B8 = 25: 1. Environmental conditions

follow the International Standard Atmosphere (ISA)
model, with air density p = 1.225 kg/m?>.

Within the iterative RLPC algorithm, the activation
function vectors W(e;) and ®(e;) for each hidden layer
of actor and critic neural networks are both specified as
Gaussian radial basis functions:

—lbi—el (1212 b 021122

(o) = (exp kel exp kil I,
b pMa 2,2
. ,exp H’I e; H K

—lbi—e! |2k b 02|22

(I)(ei) = (exp H’l (’,'H K ;exp H’I ‘),’H K ;

M 2,2
. —lei—e; K
<o eXp ki i I )

where k = 1.1, and the number of center points in each
hidden layer of the actor and critic networks is set to
M,=M.=5. The terms (e};e?;-- ;eM) and
(else2;--- ;e!") denote the center points in the hidden
layers of the actor and critic networks, respectively.
Each center point is a four-dimensional vector match-
ing the input dimensions (velocity error, longitudinal
position error, lateral position error, and heading angle
error), with components randomly sampled from
[-3,3], [-3,3], [-1,1], and [-0.1,0.1], respectively.
The function I'(-) denotes the hyperbolic tangent func-
tion, that is,

ef — e X

tanh(x) = m .

(52)

The initial weights for each actor network and critic
neural network, denoted WB o and W, g, are randomly
selected from the range [—0.5, 0.5]. The maximum num-
ber of iterations is set to /n,x = 4 and ppax = 4 in Case
1, and /p.x = 8 and pmax = 8 in Case 2. The weight
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Table 2. Parameters of the i" vehicle.

Table 4. Parameters of the controller.

Parameter Value Parameter Value Parameter Value
mj 18000 kg I 130421.8 kg -m?>  Sampling time T, 0.0Is
c;,- 35m l;, 1.5m Weight matrix Q 10° X diag(2, 70, 40, 40)
Ji 24 kg - m? Ji 48 kg - m? Weight matrix R; diag(0.06, 3% IO")
Re 0.5Im Tfmin, Tfmax —10000, 10000 (N - m)
i, mins Oj, max —0.|, 0| (rad)
Fixed spacing do I'm
Table 3. Parameters of the Magic Formula.
Tire force B C D E Table 5. Initial vehicle position information.
FI."f 8.434 1.813 21370 0.6593  Vehicle number Initial position
F 8.434 1.813 42020 0.6593
FIf 5.228 2.42 21430 0.9869 Leading vehicle :
F" 5.228 2.42 42140 0.9869  Following vehicle |

convergence threshold is AW, (e) = AW.(e) = 1072,
Other controller parameters are shown in Table 4.

Case I: lterative RLPC algorithm (N, = 3)

At the initial time, the positions of the vehicles are given
in Table 5. The road adhesion coefficient is set to 0.85.
The leading vehicle begins with an initial velocity of
20 m/s, maintaining a constant velocity, then decelerat-
ing to 15 m/s, and finally sustaining a constant velocity.
All following vehicles are initialized at 21 m/s, with
zero lateral displacement and heading angle errors. The
vehicle platoon travels along a straight road, enters a
curve, and then returns to a straight road. The maxi-
mum curvature of the road is 0.01, with the curvature
profile shown in Figure 8.

In Figure 9(a) to (c), the longitudinal velocity, posi-
tion, and trajectory of the vehicle platoon are shown.
In Figure 10(a) to (c), the longitudinal position error,
heading angle error, and lateral position error of the
following vehicles are shown.

(
(
Following vehicle 2 (
Following vehicle 3 (

(1) Longitudinal tracking: In Figure 9(a), the simula-
tion results demonstrate that following vehicles in
the platoon quickly track the leading vehicle’s
velocity and maintain consistency. During curved
driving, longitudinal velocity is influenced by lat-
eral velocity due to coupled lateral and longitudi-
nal dynamics. As vehicles enter the curve at
different times, velocity disturbances propagate
through the platoon. This requires following vehi-
cles to simultaneously handle both their own
coupled dynamics and incoming disturbances,
leading to bounded fluctuations in longitudinal
velocity. Figure 10(a) confirms that the proposed
iterative RLPC algorithm maintains the expected
inter-vehicle spacing, with the longitudinal posi-
tion errors of following vehicles asymptotically
converging to zero. Notably, during curved driv-
ing, coupled dynamics and disturbance propaga-
tion cause bounded fluctuations in inter-vehicle
spacing around the desired value.

0.015

0.01 -

0.005 -

-0.005

Curvature (1/m)

-0.01

-0.015 - - -
0 10 20 30 40
Time (s)

(a)

0.015

0.01 -

0.005

-0.005 |

Curvature (1/m)

-0.01

-0.015 - - - - -
0 10 20 30 40 50 60

Time (s)

(b)

Figure 8. The road curvature: (a) Case | and (b) Case 2.
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Figure 9. Iterative RLPC with N, =3: (a) longitudinal velocity, (b) longitudinal position, and (c) trajectory.
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Figure 10. Iterative RLPC with N, =3: (a) longitudinal position error, (b) heading angle error, and (c) lateral position error.

Table 6. Comparison of computational time for the iterative
RLPC algorithm.

According to the “Technical Standard of Highway
Engineering,” the width of a highway lane is 3.75 m
and that of the emergency lane is 3.5 m. With truck

Computational time Vehicle | Vehicle 2 Vehicle 3~ Widths ranging from 2 to 2.4 m, the maximum allow-

able lateral position error is 0.675 m to avoid crossing
Average 0.0041 s 0.0039 s 0.0039 s Jane boundaries. As shown in Figure 10(b) and (c), the
Maximum 0.0064 s 0.0059 s 0.0059 s

(2) Safety and trajectory consistency: In Figure 9(b)
and (c), it is shown that, under the proposed con-
troller, the vehicles’ trajectories remain consistent
and no collisions occur within the platoon.

heading angle error and lateral position error of the fol-
lowing vehicles remain zero when the platoon is on a
straight road. On curved roads, these errors change but
remain within the allowable range, confirming that the
proposed controller ensures the safety of the vehicle
platoon.

In Figure 11(a) and (b), it is indicated that the torque
and front wheel steering angle of the following vehicles

.
1510 02 03
—— Ith vehicle —— Ith vehicle
0.15 ——2th vehicle . ——2th vehicle
! I A A e St i = —— 3th vehicle 025 —— 3th vehicle
—— 1th vehicle T S EET T
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g 95 ——3th vehicle g 00s g 2
£ @ £
Z = o
Z o0 5 0 Sois
el = E
] — =
= 3 -0.05 =)
Eos 2 R I
2 Dl mmmm— - —————————— ©
B e S 005
-0.15
s ; ; ; ; ; ; ; 0o ; ; ; ; ; ; ; 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time (s) Time (s) Time (s)
(a) (b) (c)

Figure I 1. Iterative RLPC with N, = 3: (a) torque, (b) front wheel steering angle, and (c)

computational time.
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Table 7. The design velocity and the corresponding minimum
radius of curvature for highways.

100
700

80
400

60
200

Design velocity (km/h)
Minimum radius of curvature (m)

in the platoon satisfy the actuator constraints. Figure
11(c) presents the computational time of the following
vehicles under the iterative RLPC algorithm. Table 6
provides both the average and maximum computa-
tional times for each following vehicle, all of which are
below the 0.01-s sampling threshold.

Case 2: Comparison of iterative RLPC and NMPC
algorithms (N, = 7)

According to the “Technical Standard of Highway
Engineering,” the corresponding relationship between
velocity and road curvature is shown in Table 7.

In Figures 12 to 15, a comparative analysis of the
simulation results for the coupled controller under two
different algorithms is presented. In Figures 12 and 14,
the simulation results based on the iterative RLPC
algorithm are shown, and in Figures 13 and 15, the
simulation results obtained by utilizing the conven-
tional NMPC algorithm are depicted.
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Figure 12. Iterative RLPC with N, =7: (a) longitudinal velocity, (b) longitudinal position, and (c) trajectory.
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Figure 13. NMPC with N, =7: (a) longitudinal velocity, (b) longitudinal position, and (c) trajectory.
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Figure 14. Iterative RLPC with N, =7: (a) longitudinal position error, (b) heading angle error, and (c) lateral position error.
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Figure 15. NMPC with N, =7: (a) longitudinal position error, (b) heading angle error, and (c) lateral position error.
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Figure 17. Comparison of computational time with N, =7: (a) iterative RLPC and (b) NMPC.

As shown in subfigure (a) of Figures 12 to 15, the
iterative RLPC algorithm demonstrates superior per-
formance compared to the NMPC algorithm in both
longitudinal velocity tracking and inter-vehicle spacing
maintenance, despite oscillations observed in both algo-
rithms due to coupled dynamics and disturbance pro-
pagation. Subfigures (b) and (c) of Figures 12 and 13

further confirm that both algorithms effectively prevent
collisions within the platoon. Moreover, subfigures (b)
and (c) of Figures 14 and 15 indicate that the iterative
RLPC algorithm achieves higher lateral tracking accu-
racy, with a maximum lateral error of only 0.07 m, well
below the limit specified in the “Technical Standard of
Highway Engineering.”
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Table 8. Comparison of average computational time between
the two algorithms.

Algorithm Vehicle | Vehicle 2 Vehicle 3
Iterative RLPC 0.0206 s 0.0200 s 0.0200 s
NMPC 0.0821 s 0.0827 s 0.0833 s

As shown in Figure 16, the iterative RLPC algo-
rithm ensures that the torque and front wheel steering
angle of the following vehicles in the platoon satisfy the
actuator constraints. As shown in Figure 17 and Table
8, the RLPC algorithm outperforms the NMPC algo-
rithm in both average and maximum computational
time. Notably, the NMPC algorithm, solved via
MATLAB’s fmincon, fails to find feasible solutions
within the prescribed 0.01-s sampling time, whereas the
iterative RLPC algorithm consistently obtains feasible
solutions within this time frame.

In summary, the proposed iterative RLPC algorithm
not only reduces the computational burden compared
to the conventional NMPC algorithm, but also exhibits
superior tracking performance.

Conclusion

A coordinated control architecture was proposed for
high-speed, fully loaded vehicle platoons, integrating
longitudinal tracking with lateral lane-keeping. A five-
degree-of-freedom vehicle dynamics model, capturing
coupled longitudinal-lateral characteristics and tire
nonlinearities, was incorporated with a lane-keeping
model to form an integrated platoon model.
Subsequently, a synchronous distributed model predic-
tive control strategy was developed, using an iterative
RLPC algorithm to solve non-convex constrained opti-
mization problems in real time. Co-simulation using
MATLAB/Simulink and TruckSim demonstrated that
the proposed strategy achieved accurate longitudinal
and lateral control with a lower computational burden
compared to conventional NMPC algorithms. Prior to
real-world implementation, the nominal model para-
meters must be calibrated against actual vehicle data.
Future work will focus on the development of light-
weight neural networks to further reduce computa-
tional burden and enhance robustness against model
parameter uncertainties.
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